Subject Areas : Journal of Optoelectronical Nanostructures
Soudabeh Abdolahpur 1 , narges bagheri 2 , mehdi vadi 3 , seyed mohammad azami 4
1 - Deparetment of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad,
Iran
2 - Deparetment of Chemistry, Fasa Branch, Islamic Azad University, Fasa, Iran
3 - Deparetment of Chemistry, College of Sciences, Yasouj University, Yasouj, Iran
4 - Deparetment of Chemistry, College of Sciences, Yasouj University, Yasouj, Iran
Keywords:
Abstract :
[1] T. Niazkar, G. Shams, Z. Soltani. Electronic, Optical, and Thermoelectric Properties of BaFe2-xZnxAs2(x=0,1,2) orthorhombic Polymorphs: DFT Study. J. Optoelectron. Nanostructures. 6 (3) (2021) 93-116.
Available: http://jopn.miau.ac.ir/article_4982.html
[2] S. Damizadeh, M. Nayeri, F. Kalantari Fotooh, S. Fotoohi, Electronic and Optical Properties of SnGe and SnC Nanoribbons: A First-Principles Study. J. Optoelectron. Nanostructures. 5(4) (2020) 67-86.
Available: http://jopn.miau.ac.ir/article_4507.html
[3] M. Mohammadi, M. Vadi, N. Bagheri. Study of Amitriptiline Drug Adsorption on Multi Walled Carbon Nanotube (MWCNT). J. New Materials. 11(43) (2021) 70-81.
Available: http://jnm.miau.ac.ir/article_4679.html?lang=en [4] S. J. Mousavi. Ab-initio LSDA Study of the Electronic States of Nano Scale Layered LaCoO3/Mn Compound: Hubbard Parameter Optimization. J. Optoelectron. Nanostructures. 5(4) (2020) 111-122. Available: http://jopn.miau.ac.ir/article_4512.html [5] A. Jahanshir. Quanto-Relativistic Background of Strong Electron-Electron Interactions in Quantum Dots under magnetic field. J. Optoelectron. Nanostructures. 6(3) (2021) 93-116. Available: http://jopn.miau.ac.ir/article_4972.html
[6] T. Ghaffary, F. Rahimi.Y. Naimi, H. Khajehazad. Study of the Spin-Orbit Interaction Effects on Energy Levels and the Absorption Coefficients of Spherical Quantum Dot and Quantum Anti-Dotunderthe Magnetic Field. J. Optoelectron. Nanostructures. 6(2) (2021) 55-74.
Available: http://jopn.miau.ac.ir/article_4769.html
[7] F. Younas, M.Y. Mehboob, K. Ayub, R. Hussain, A. Umar, M.U. Khan, Z. Irshad, M. Adnan. Efficient Cu decorated inorganic B12P12 nanoclusters for sensing toxic COCl2 gas: a detailed DFT study. Journal of Computational Biophysics and Chemistry. 20(01) (2021) 85-97. Available: https://doi.org/10.1142/S273741652150006X. [8] M. REZAEI SAMETI, H. ZANGANEH. TD-DFT, NBO, AIM, RDG AND THERMODYNAMIC STUDIES OF INTERACTIONS OF 5-FLUOROURACIL DRUG WITH PRISTINE AND P-DOPED AL12N12 NANOCAGE. PHYS. CHEM. RES. 8(3) (2020) 511-527.
Available: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=743122
[9] M.Y. Mehboob, F. Hussain, R. Hussain, A. Shaukat, Z. Irshad, M. Adnan, A. Khurshid. Designing of Inorganic Al12N12 Nanocluster with Fe, Co, Ni, Cu and Zn Metals for Efficient Hydrogen Storage Materials. Journal of Computational Biophysics and Chemistry. 20(04) (2021) 359-375. Available: https://doi.org/10.1142/S2737416521500186.
[10] A.S. Meo. 2021. Environmental Pollution and the Brain. CRC Press. Available:https://www.routledge.com/Environmental-Pollution-and-the-Brain/Meo/p/book/9781032065090
[11] S. Hussain, R. Hussain, M.Y. Mehboob, S.A.S. Chatha, A.I. Hussain, A. Umar, M.U. Khan, M. Ahmed, M. Adnan, K. Ayub. Adsorption of phosgene gas on pristine and copper-decorated B12N12 nanocages: a comparative DFT study. ACS omega. 5(13) (2020) 7641-7650. Available: https://doi.org/10.1021/acsomega.0c00507.
[12] M. Adnan, J.K. Lee. All sequential dip-coating processed perovskite layers from an aqueous lead precursor for high efficiency perovskite solar cells. Scientific reports. 8(1) (2018) 1-10. Available: https://doi.org/10.1038/s41598-018-20296-2.
[13] S. Hussain, S.A.S. Chatha, A.I. Hussain, R. Hussain, Y.M. Mehboob, T. Gulzar, A. Mansha, N. Shahzad, K. Ayub, K. Designing novel Zn-decorated inorganic B12P12 nanoclusters with promising electronic properties: a step forward toward efficient CO2 sensing materials. ACS omega. 5 (25) (2020) 15547-15556. Available: https://doi.org/10.1021/acsomega.0c01686.
[14] R. M. Pitzer. The barrier to internal rotation in ethane. J. phys. Chem A. 113(45) (2009) 12343-12345. Available: https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Russell+M.++Pitzer
[15] W.H. Schwarz, P. Valtazanos, K. Ruedenberg. Electron difference densities and chemical bonding. Theoretica chimica acta. 68(6) (1985) 471-506. Available: https://doi.org/10.1007/BF00527670.
[16] W.H.E. SCHWARZ, K. RUEDENBERG, L. MENSCHING. CHEMICAL DEFORMATION DENSITIES. 1. PRINCIPLES AND FORMULATION OF QUANTITATIVE DETERMINATION. J. AM. CHEM. SOC. 111(18) (1989) 6926-6933. Available: https://doi.org/10.1021/ja00200a006. [17] T. Gohda, M. Ichikawa, T. Gustafsson, I. Olovsson. X-ray study of deformation density and spontaneous polarization in ferroelectric NaNO2. Acta Crys. Sec. B: Structural Science. 56(1) (2000) 11-16. Available: DOI: 10.1107/s010876819901054x.
[18] G. Will. Electron deformation density in titanium diboride chemical bonding in TiB2. J. Solid State Chem. 177(2) (2004) 628-631.
Available: https://doi.org/10.1016/j.jssc.2003.04.008.
[19] J. Gu, J. Wang, J. Leszczynski. H− Bonding Patterns in the Platinated Guanine− Cytosine Base Pair and Guanine− Cytosine− Guanine− Cytosine Base Tetrad: an Electron Density Deformation Analysis and AIM Study. J. Am. Chem. Soc. 126(39) (2004) 12651-12660. Available: https://doi.org/10.1021/ja0492337.
[20] F. Ghanavati, S.M. Azami. Topological analysis of steric and relaxation deformation densities. Molecular Physics. 115(6) (2017) 743-756.
Available: https://doi.org/10.1080/00268976.2017.1281457.
[21] K. Kiewisch, G. Eickerling, M. Reiher, J. Neugebauer. Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory. J. Chem. Phys. 128 (4) (2008) 044114.
Available: https://doi.org/10.1063/1.2822966.
[22] M. Parafiniuk, M.P. Mitoraj. On the origin of internal rotation in ammonia borane. J. Mol. model. 20(6) (2014) 1-9. Available: doi: 10.1007/s00894-014-2272-y. [23] M. P. Mitoraj , M. Parafiniuk, M. Srebro, M. Handzlik, A. Buczek , A. Michalak. Applications of the ETS-NOCV method in descriptions of chemical reactions. J Mol Model. 17(9) (2011) 2337-2352. Available: DOI: 10.1007/s00894-011-1023-6.
[24] S. Fakhraee, M. Azami. Orbital representation of kinetic energy pressure. J. Chem. Phys. 130 (2009) 084113.
Available: https://doi.org/10.1063/1.3077026.
[25] J.T. Su, W.A. Goddard. The dynamics of highly excited electronic systems: Applications of the electron force field. J. Chem. Phys. 131 (2009) 244501.
Available: https://doi.org/10.1063/1.3272671.
[26] K. Ruedenberg. The Physical Nature of the Chemical Bond, Rev. Mod. Phys. 34 (1962) 326. Available: https://doi.org/10.1103/RevModPhys.34.326
[27] H. Tokiwa, H. Ichikawa. Origin of steric hindrance in ethane. Int. J. Quant. Chem. 50 (2) (1994) 109-112.
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.560500204
[28] S.G. Wang, Y. X. Qiu, W.H.E. Schwarz. Bonding or Nonbonding? Description or Explanation? “Confinement Bonding” of He@adamantane, chemistry A European journal. 15(24) (2009) 6032-6040. Available: https://doi.org/10.1002/chem.200802596.
[29] V. Weissopf. Of Atoms, Mountains, and Stars: A Study in Qualitative Physics. SCIENCE. 187 (4177) (1975) 605-612.
Available: https://www.science.org/doi/10.1126/science.187.4177.6.
[30] F. Weinhold and C.R. Landis, Valency and bonding: a natural bond orbital donor-acceptor perspective (Cambridge University Press, Cambridge, p 37, 2003).
Available: https://scholar.google.com/scholar?q=F.+Weinhold+and+C.R.+Landis,+Valency+and+bonding:&hl=fa&as_sdt=0&as_vis=1&oi=scholart
[31] A.I. Ermakov, A.E. Merkulov, A.A. Svechnikova. Basis Set Orbital Relaxation in Atomic and Molecular Hydrogen Systems. J. Struct. Chem. 45(6) (2004) 923-928. Available: DOI:10.1007/s10947-005-0080-z
[32] A.D. Mclean. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 72 (1980) 5639.
Available: https://doi.org/10.1063/1.438980.
[33] Y. Zhao, D.G. Truhlar. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts. 120 (2008) 215-241. Available: https://doi.org/10.1007/s00214-007-0310-x.
[34] M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, revision A.02. Gaussian Inc, Pittsburgh, PA, 2009. Available: www.gaussian.com
[35] S.M. Azami, Densitizer Ver. 1.1.48 (http://densitizer.orbital.xyz), 2019. Available: http://densitizer.orbital.xyz
[36] Gaussian, Inc (2000-2008) GaussView 5.0. Gaussian, Inc. copyright (c) Semichem, Inc. Available: www.gaussian.com
[37] A. J. Stone, The theory of intermolecular forces. (Oxford University Press, Oxford.1996).Available: https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199672394.001.0001/acprof-9780199672394
[38] S. Sedighi, M. T. Baei, M. Javan, J. C. Ince, A. Soltani, M.H. Jokar, S. Tavassoli. Adsorption of sarin and chlorosarin onto the Al12N12 and Al12P12 nanoclusters: DFT and TDDFT calculations. Surf Interface Anal. 52(11) (2020) 725-734. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sia.6861
[39] I. Silaghi-Dumitrescu, F. Lara-Ochoa, I. Haiduc. A12B12 (A = B,Al; B = N, P) fullerene-like cages and their hydrogenated forms stabilized by exohedral bonds. An AM1 molecular orbital study. J. Mol. Struct. (THEOCHEM). 370(1) (1996) 17-23.
Available: https://fdocuments.in/document/a12b12-a-bal-b-np-46-fullerene-like-cages-and-their-hydrogenated-forms.html [40] Q. Wang, Q. Sun, P. Jena, Y. Kawazoe. Potential of AlN nanostructures as hydrogen storage materials. ACS Nano. 3(3) (2009, March) 621-626. Available: https://doi.org/10.1021/nn800815e
[41] M. Saeedi, M. Anafcheh, R. Ghafouri, N.L. HadipourL. A computational investigation of the electronic properties of Octahedral AlnNn and AlnPn cages (n = 12, 16, 28, 36, and 48). Struct Chem. 24(2) (2013) 681-689.
Available: https://link.springer.com/article/10.1007/s11224-012-0119-7 .