Subject Areas : Journal of Optoelectronical Nanostructures
MohammadAmin ZekavatFetrat 1 , Mohammad Sabaeian 2 , Ghahraman Solookinejad 3
1 - Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
2 - Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Center for Research on Laser and Plasma, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 - Center for Research on Laser and Plasma, Shahid Chamran University of Ahvaz,
Ahvaz, Iran
Keywords:
Abstract :
García de Arquer, F.P., et al., Semiconductor quantum dots: Technological progress and future challenges. Science, (2021). 373(6555), eaaz8541. https://doi.org/10.1126/science.aaz8541
[2] Jung, H., N. Ahn, and V.I. Klimov, Prospects and challenges of colloidal quantum dot laser diodes. Nature Photonics, 15(9) (2021) 643-655. https://doi.org/10.1038/s41566-021-00827-6
[3] Lv, Z., et al., Semiconductor quantum dots for memories and neuromorphic computing systems. Chemical reviews, 120(9) (2020) 3941-4006. https://doi.org/10.1021/acs.chemrev.9b00730
[4] Kagan, C.R., et al., Colloidal quantum dots as platforms for quantum information science. Chemical Reviews, 121(5) (2020) 3186-3233. https://doi.org/10.1021/acs.chemrev.0c00831
[5] Van Dyke, J.S., et al., Protecting quantum information in quantum dot spin chains by driving exchange interactions periodically. Physical Review B, 103(24) (2021) 245303. https://doi.org/10.1103/PhysRevB.103.245303
]6] Yahyazadeh, R. and Z. Hashempour, Effect of Hydrostatic Pressure on Optical Absorption Coefficient of InGaN/GaN of Multiple Quantum Well Solar Cells. Journal of Optoelectronical Nanostructures, 6(2) (2021) 1-22. https://dx.doi.org/10.30495/jopn.2021.27941.1221
[7] Jafari, S.N., A. Ghadimi, and S. Rouhi, Strained Carbon Nanotube (SCNT) thin layer effect on GaAs solar cells efficiency. Journal of Optoelectronical Nanostructures, 5(4) (2020). http://jopn.miau.ac.ir/article_4505.html
[8] Yahyazadeh, R. and Z. Hashempour, Numerical Modeling of Electronic and Electrical Characteristics of 0.3 0.7 Al Ga N/GaN Multiple Quantum Well Solar Cells. Journal of Optoelectronical Nanostructures, 5(3) (2020) 81-102. http://jopn.miau.ac.ir/article_4406.html
[9] Cheraghizade, M., Optoelectronic properties of PbS films: Effect of carrier gas. Journal of Optoelectronical Nanostructures, 4(2) (2019) 1-12. http://jopn.miau.ac.ir/article_3474.html
[10] Sefidgar, Y., H. Rasooli Saghai, and H. Ghatei Khiabani Azar, Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP. Journal of Optoelectronical Nanostructures, 4(2) (2019) 83-102. http://jopn.miau.ac.ir/article_3480.html
[11] Izadneshan, H., V. Gremenok, and G. Solookinejad, Fabrication of Cu (In, Ga) Se2 solar cells with In2S3 buffer layer by two stage process. Journal of Optoelectronical Nanostructures, 1(2) (2016) 47-56. http://jopn.miau.ac.ir/article_2048_0.html
[12] Masumoto, Y. and T. Takagahara, Semiconductor quantum dots: physics, spectroscopy and applications. (2013): Springer Science & Business Media. https://link.springer.com/book/10.1007%2F978-3-662-05001-9
[13] Tartakovskii, A., Quantum dots: optics, electron transport and future applications. (2012). https://www.cambridge.org/ir/academic/subjects/physics/condensed-matter-physics-nanoscience-and-mesoscopic-physics/quantum-dots-optics-electron-transport-and-future-applications?format=HB&isbn=9781107012585
[14] Rana, M., et al., Glutathione capped core/shell CdSeS/ZnS quantum dots as a medical imaging tool for cancer cells. Inorganic Chemistry Communications, 112 (2020) 107723. https://doi.org/10.1016/j.inoche.2019.107723
[15] Sabaeian, M. and A. Khaledi-Nasab, Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer. Applied Optics, 51(18) (2012) 4176-4185. https://doi.org/10.1364/AO.51.004176
[16] Shahzadeh, M. and M. Sabaeian, The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots. AIP Advances, 4(6) (2014) 067113. https://doi.org/10.1063/1.4896510
[17] Sabaeian, M. and M. Shahzadeh, Investigation of in-plane-and z-polarized intersubband transitions in pyramid-shaped InAs/GaAs quantum dots coupled to wetting layer: Size and shape matter. Journal of Applied Physics, 116(4) (2014) 043102. https://doi.org/10.1063/1.4891252
[18] Sabaeian, M. and M. Riyahi, Truncated pyramidal-shaped InAs/GaAs quantum dots in the presence of a vertical magnetic field: An investigation of THz wave emission and absorption. Physica E: Low-dimensional Systems and Nanostructures, 89 (2017) 105-114. https://doi.org/10.1016/j.physe.2017.02.008
[19] Baskaran, A. and P. Smereka, Mechanisms of stranski-krastanov growth. Journal of Applied Physics, 111(4) (2012) 044321. https://doi.org/10.1063/1.3679068
[20] Gajjela, R.S., et al., Structural and compositional analysis of (InGa)(AsSb)/GaAs/GaP Stranski–Krastanov quantum dots. Light: Science & Applications, 10(1) (2021) 1-13. https://doi.org/10.1038/s41377-021-00564-z
[21] Choubani, M., H. Maaref, and F. Saidi, Nonlinear optical properties of lens-shaped core/shell quantum dots coupled with a wetting layer: effects of transverse electric field, pressure, and temperature. Journal of Physics and Chemistry of Solids, 138 (2020) 109226. https://doi.org/10.1016/j.jpcs.2019.109226
[22] Mo, Q., et al., Room temperature synthesis of stable silica-coated CsPbBr 3 quantum dots for amplified spontaneous emission. Photonics Research, 8(10) (2020) 1605-1612. https://doi.org/10.1364/PRJ.399845
[23] Zekavat, M.A., M. Sabaeian, and G. Solookinejad, Graphene plasmonic coupling with intersubband radiation of truncated pyramidal-shaped InAs/GaAs quantum dots. JOSA B, 38(6) (2021) 1824-1833. https://doi.org/10.1364/JOSAB.416163
[24] Choubani, M., et al., Nonlinear optical rectification in vertically coupled InAs/GaAs quantum dots under electromagnetic fields, pressure and temperature effects. Journal of luminescence, 144 (2013) 158-162. https://doi.org/10.1016/j.jlumin.2013.07.002
[25] Sabaeian, M. and M. Shahzadeh, GaAs pyramidal quantum dot coupled to wetting layer in an AlGaAs matrix: A strain-free system. Physica E: Low-Dimensional Systems and Nanostructures, 68 2015). 215-223. https://doi.org/10.1016/j.physe.2015.01.004
[26] Zettili, N., Quantum mechanics: concepts and applications. (2003), American Association of Physics Teachers. https://doi.org/10.1119/1.1522702