Subject Areas : Journal of Optoelectronical Nanostructures
Omid Talati Khoei 1 , Reza Hosseini 2
1 - Department of Electrical Engineering, Khoy Branch, Islamic Azad
University, Khoy, Iran
2 - Department of Electrical Engineering, Khoy Branch, Islamic Azad
University, Khoy, Iran
Keywords:
Abstract :
[1] M. Roohy, R. Hosseini. Performance Study and Analysis of Heterojunction Gate All Around Nanowire Tunneling Field Effect Transistor, Journal of Optoelectronical Nanostructures. 4(2) (2019) 13-28.
Available: http://jopn.miau.ac.ir/article_3475.html
[2] M. H. Han, Ch.Y. Chang, H. B. Chen, Y. Ch. Cheng, Y. Ch. Wu. Device and Circuit Performance Estimation of Junctionless Bulk FinFETs, IEEE
NOR
NAND
XOR
Power Dissipation [nW]
260
240
224
Propagation Delay [ps]
1.6
1.7
1.5
Power Delay Product[fJ]
416
408
336
NOR
NAND
XOR
Power Dissipation [nW]
195
180
168
Propagation Delay [ps]
4.65
4.5
4.2
Power Delay Product[fJ]
906
810
705
Transaction on Electron Devices. 60(6) (2013) 1807-1813.
Available: https://ieeexplore.ieee.org/document/6509427
[3] A. Pourchitsaz, M. R. Shayesteh, Self-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET), Journal of Optoelectronical Nanostructures. 4(1) (2019) 51-66.
Available: http://jopn.miau.ac.ir/article_3385.html
[4] M. Akbari Eshkalak, R. Faez, A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor, Journal of Optoelectronical Nanostructures, 2(3) (2017) 1-12.
Available: http://jopn.miau.ac.ir/article_2427.html
[5] M. Vadizadeh, G. Darvish, M. Fathipour, A Novel Field Effect Diode (Fed) Structure For Improvement Of Ion/Ioff Ratio Parameter In The Nanometer Regime, IOSR Journal of Electrical and Electronics Engineering. 10. (2015).18-22.
Available: https://www.researchgate.net/publication/299565555_A_Novel_Field_Effect_Diode_Fed_Structure_For_Improvement_Of_I_on_I_off_Ratio_Parameter_In_The_Nanometer_Regime
[6] A. Es-Sakhi, M. Chowdhury, Analysis of device capacitance and subthreshold behavior of Tri-gate SOI FinFET. Microelectronics Journal. 62 (2017). 30-37.
Available: https://www.sciencedirect.com/science/article/abs/pii/S0026269217301143
[7] X. Liu, M. Wu, X. Jin, R. Chuai, J Lee. Simulation study on deep nanoscale short channel junctionless SOI FinFETs with triple-gate or double-gate structures. Journal of computational Electronics. 13(2) (2014) 509–514.
Available: https://link.springer.com/article/10.1007/s10825-014-0562-3
[8] N. Manavizadeh, F. Raissi, E. Soleimani, M. Pourfath. Geometrical study of nanoscale field effect diodes. Semiconductor Science and Technology. 27 (2012). 045011.
Available:https://iopscience.iop.org/article/10.1088/0268-1242/27/4/045011/meta
[9] N. Manavizadeh, F. Raissi, E. Soleimani, M. Pourfath, S. Selberherr. Performance Assessment of Nanoscale Field-Effect Diodes, IEEE Transaction on Electron Devices, vol. 58(8) (2011) 2378-2384.
Available: https://ieeexplore.ieee.org/abstract/document/5779716
[10] M. Vadizadeh, M. Fathipour, G. Darvish. Silicon on Raised Insulator Field
Effect Diode Sori-Fed for Alleviating Scaling Problem in Fed. International Journal of Modern Physics B. 28(5) (2014) 1450038.
Available: https://www.worldscientific.com/doi/abs/10.1142/S0217979214500386
[11] M. Vadizadeh. Dual material gate nanowire field effect diode (DMG-NWFED): Operating principle and properties. Microelectronics Journal. 71 (2018) 1–7.
Available: https://www.sciencedirect.com/science/article/abs/pii/S0026269217305384
[12] B. Touchaei, N. Manavizadeh, Design and Simulation of Low-Power Logic Gates Based on Nanoscale Side-Contacted FED. IEEE Transaction on Electron Devices. 64(1) (2016) 306-311.
Available: https://ieeexplore.ieee.org/document/7752852
[13] M. Vadizadeh. Improving gate delay and ION/IOFF in nanoscale heterostructure field effect diode (H-FED) by using heavy doped layers in the channel. Applied Physics A. 122 (2016) 469.
Available: https://link.springer.com/article/10.1007/s00339-016-0009-8
[14] A. Rezaei, B. Azizollah-Ganji, M. Gholipour. Effects of the Channel Length on the Nanoscale Field Effect Diode Performance, Journal of Optoelectronical Nanostructures. 3(2) (2018) 29-40.
Available: http://jopn.miau.ac.ir/article_2862.html
[15] R. Hosseini, M. Fathipour, R. Faez. Quantum simulation study of gate-all-around (GAA) silicon nanowire transistor and double gate metal oxide semiconductor field effect transistor (DG MOSFET). International Journal of the Physical Sciences, 7(28) (2012) 5054-5061.
Available: https://academicjournals.org/journal/IJPS/articleabstract/B27116C16368
[16] A. Ferron, B. Cottle, G. Curatola, G. Fiori, E. Guichard. Schrodinger Approach and Density Gradient Model for Quantum Effects Modeling, A Journal for Process and Device Engineers. 14 (2004) 1-3.
Available: https://www.researchgate.net/publication/268273208_Schrodinger_Approach_and_Density_Gradient_Model_for_Quantum_Effects_Modeling
[17] S. M. Hong, Compact Charge Modeling of Double-Gate MOSFETs Considering the Density-Gradient Equation, Journal of the Electron Device society. 7 (2019). 409-416.
Available: https://ieeexplore.ieee.org/document/8663333
[18] A. Wettstein, A. Schenk, W. Fichtner. Quantum Device-Simulation with the
Density Gradient Model on Unstructured Grids, IEEE Transaction on Electron Devices. 48 (2001) 279-283.
Available: https://ieeexplore.ieee.org/document/902727
[19] A. Brown, A. Martinez, N. Seoane, A. Asenow. Comparison of Density Gradient and NEGF for 3D Simulation of a Nanowire MOSFET, Proceeding of the 2009 Spanish Conference on Electron Devices. (2009) 140-143.
Available: https://ieeexplore.ieee.org/document/4800450
[20] Silvaco Int.: ATLAS User’s Manual, Device simulation Software, Silvaco International, Santa Clara (2016)
[21] A. Schenk. Finite-temperature full random-phase approximation model of band-gap narrowing for silicon device simulation. Journal of Applied Physics. 84 (1998) 3684- 3694.
Available: https://aip.scitation.org/doi/10.1063/1.368545
[22] A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas. Improved quantitative description of Auger Recombination in crystalline silicon. Physical Review B. 86 (2012) 165202.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.165202
[23] W. Shockley, W. Read. Statistics of the Recombination of Holes and Electrons. Physical Review. 87(1952) 835-842.
Available: https://journals.aps.org/pr/abstract/10.1103/PhysRev.87.835
[24] R. N. Hall. Electron Hole Recombination in Germanium. Physical Review. 87(1952) 387.
Available: https://journals.aps.org/pr/abstract/10.1103/PhysRev.87.387