Subject Areas : Journal of Optoelectronical Nanostructures
Tahmineh Jalali 1 , Abdolrasoul Gharaati 2 , Mohammad Rastegar 3 , Mohammad Ghanaatian 4
1 - Physics Department, Persian Gulf University, Bushehr, Iran
2 - Physics Department, Payame Noor University, Tehran, Iran
3 - Physics Department, Payame Noor University, Tehran, Iran
4 - Physics Department, Payame Noor University, Tehran, Iran
Keywords:
Abstract :
[1] A. A. Fedyanin, O. A. Aktsipetrov, D. Kobayashi, K. Nishimura, H. Uchida
and M. Inoue, Enhanced Faraday and nonlinear magneto-optical Kerr
effects in magnetophotonic crystals, J. Magn. Magn. Mater. 282 (2004) 256-
259.
[2] K. Sakoda, Optical Properties of Photonic Crystals, 2nd Edition, Springer.
New York, USA, 2004.
[3] J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic
Crystals:Molding the Flow of Light, Princeton University Press, 2nd edition.
New Jersey, USA, 2008.
[4] Z. Zare and A. Gharaati, Investigation of thermal tunable nano metallic
photonic crystal filter with mirror symmetry, JOPN. 3 (3) (2018) 27-36.
[5] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and
electronics, Phys. Rev. Lett. 58 (20) (1987) 2059-2062.
[6] S. John, Strong localization of photons in certain disordered dielectric
superlattices, Phys. Rev. Lett. 58 (23) (1987) 2486-2489.
[7] J. C. Knight, J. Broeng, T. A. Birks and P. St. J. Russell, Photonic Band Gap
Guidance in Optical Fibers, Science. 282 (5393) (1998) 1476-1478.
[8] Z. Wu, K. Xie and H. Yang, Band gap properties of two-dimensional
photonic crystals with rhombic lattice, Optik. 123 (6) (2012) 534-536.
[9] Y. A. Vlasov, X. Bo, J. C. Sturm and D. J. Norris, On-chip natural assembly
of silicon photonic bandgap crystals. Nature. 414 (2001) 289-293.
[10] M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Rishede,
H. E. Engan and A. Bjarklev, Electrically tunable photonic bandgap
guidance in a liquid-crystal filled photonic crystal fiber, IEEE Photon.
Tech. Lett. 17 (4) (2005) 819-821.
[11] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus
and I. Kim, Two-Dimensional Photonic Band-Gap Defect Mode Laser, Science. 284 (5421) (1999) 1819-1821.
[12] Y. Kubota, M. Taguchi, H. Akai, Sh. Yamamoto, T. Someya, Y. Hirata, K. Takubo, M. Araki, M. Fujisawa, K. Yamamoto, Y. Yokoyama, S. Yamamoto, M. Tsunoda, H. Wadati, S. Shin and I. Matsuda, L-edge resonant magneto-optical Kerr effect of a buried Fe nanofilm, Phys. Rev. B. 96 (13) (2017) 134432.
[13] T. Haider, A Review of Magneto-Optic Effects and Its Application, Int, J. Electromag, Appl. 7 (2017) 17-24.
[14] R. Abdi-Ghaleh and A. Namdar, Circular polarization bandpass filters based on one-dimensional magnetophotonic crystals, J. Mod. Opt. 60 (19) (2013) 1619-1626.
[15] M. Inoue, M. Levy and A. V. Baryshev, Magnetophotonics: From theory to applications, Springer, Berlin, Germany, 2013.
[16] V. I. Belotelov and A. K. Zvezdin, Magneto-optical properties of photonic crystals, J. Opt. Soc. Amer. 22 (1) (2005) 286-292.
[17] R. Abdi-Ghaleh and M. Asad, Design of one-dimensional magnetophotonic crystals operating at visible wavelengths, Eur. Phys. J. D. 69 (13) (2015) 1-7.
[18] A. K. Zvezdin and V. I. Belotelov, Magnetooptical properties of two dimensional photonic crystals, Eur. Phys. J. B. 37 (4) (2004) 479-487.
[19] W. K. Tse and A. H. MacDonald, Giant Magneto-optical Kerr Effect and Universal Faraday Effect in Thin-Film Topological Insulators, Phys. Rev. Lett. 105 (5) (2010) 057401.
[20] G. M. Choi, Magneto-Optical Kerr Effect Driven by Spin Accumulation on Cu, Au, and Pt, Appl. Sci. 8 (8) (2018) 1378.
[21] S. Kumari and S. Chakraborty, Study of different magneto-optic materials for current sensing applications, J. Sens. Sens. Syst. 7 (2018) 421-431.
[22] M. Inoue, K. I. Arai, T. Fujii and M. Abe, One-dimensional magnetophotonic crystals, J. App. Phys. 85 (8) (1999) 5768-5770.
[23] K. J. Vahala, Optical microcavities, Nature. 424 (2003) 839-846.
[24] N. E. Khokhlov, A. R. Prokopov, A. N. Shaposhnikov, V. N. Berzhansky, M. A. Kozhaev, S. N. Andreev, A. P. Ravishankar, V. G. Achanta, D. A. Bykov, A. K. Zvezdin and V. I. Belotelov, Photonic crystals with
plasmonic patterns: novel type of the heterostructures for enhanced magneto-optical activity, J. Phys. D: Appl. Phys. 48 (9) (2015).
[25] A. L. Chekhov, V. L. Krutyanskiy, A. N. Shaimanov, A. I. Stognij and T. V. Murzina, Wide tunability of magnetoplasmonic crystals due to excitation of multiple waveguide and plasmon modes, Opt. Express. 22 (15) (2014) 17762-17768.
[26] M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. NurE-Alam and M. Vasiliev, Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals, New J. Phys. 15 (2013).
[27] C. Y. You and S. C. Shin, Generalized analytic formulae for magneto-optical Kerr effects, J. App. Phys. 84 (1) (1998) 541-546.
[28] I. Abdulhalim, Analytic propagation matrix method for anisotropic magneto-optic layered media, J. Opt. A: Pure. Appl. Opt. 2 (6) (2000) 557-564.
[29] A. K. Zvezdin and V. A. Kotov, Modern magnetooptics and magnetooptical materials, IOP Publishing Ltd, Bristol and Philadelphia, 1997.
[30] M. Mansuripur, The physical principles of magneto-optical recording, Cambridge University Press, New York, USA, 1995.
[31] Y. A. Uspenskii, E. T. Kulatov and S. V. Halilov, Effect of anisotropy on magneto-optical properties of uniaxial crystals: Application to CrO2, Phys. Rev. B. 54 (1) (1996) 474-481.
[32] T. Kaihara, T. Ando, H. Shimizu, V. Zayets, H. Saito, K. Ando and S. Yuasa, Enhancement of magneto-optical Kerr effect by surface plasmons in trilayer structure consisting of double-layer dielectrics and ferromagnetic metal, OSA. Opt. Express. 23 (9) (2015) 11537-11555.
[33] C. Dehesa-Martinez, L. Blanko-Gutierrez, M. Velez, J. Diaz, L. M. Alvarez-Prado and J. M. Alameda, Magneto-optical transverse Kerr effect in multilayers, Phys. Rev. B. 64 (2) (2001) 024417.
[34] J. Zak, E. R. Moog, C. Liu and S. D. Bader, Fundamental magnetooptics, J. Appl. Phys. 68 (8) (1990).
[35] M. Zamani, M. Ghanaatshoar and H. Alisafaee, Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance, J. Mod. Opt. 59 (2) (2012) 126-130.
[36] W. Reim and D. Weller, Kerr rotation enhancement in metallic bilayer thin films for magnetooptical recording, App. Phys. Lett. 53 (24) (1988) 2453-2457.
[37] J. Bastos and N. Sadowski , Electromagnetic Modeling by Finite Element Method, CRC Press, Boca Raton, USA, 2003.
[38] E. Jesenska, T. Yoshida, K. Shinozaki, T. Ishibashi, L. Beran, M. Zahradnik, R. Antos, M. Kučera and M. Veis, Optical and magneto-optical properties of Bi substituted yttrium iron garnets prepared by metal organic decomposition, Opt. Soc. Amer. 6 (6) (2016) 261138.
[39] S. Yamamoto and I. Matsuda, Measurement of the Resonant Magneto-Optical Kerr Effect Using a Free Electron Laser, Appl. Sci. 7 (7) (2017) 662-1-23.
[40] E. Lage, L. Beran, A. U. Quindeau, L. Ohnoutek, M. Kucera, R. Antos, S. R. Sani, G. F. Dionne, M. Veis and C. A. Ross, Temperature-dependent Faraday rotation and magnetization reorientation in cerium-substituted yttrium iron garnet thin films, APL. MATERIALS. 5 (2017) 036104-1-7.
[41] M. Barthelemy, M. Vomir, M. Sanches Piaia, H. Vonesch, P. Molho, B. Barbara, and J. Y. Bigot, Magneto-optical four-wave mixing transients in garnets, Opt. Soc. Amer: Optica. 4 (1) (2017) 60-63.
[42] C. Tang, M. Aldosary, Z. Jiang, H. Chang, B. Madon, K. Chan, M. Wu, J. E. Garay and J. Shi, Exquisite growth control and magnetic properties of yttrium iron garnet thin films, Appl. Phys. Lett. 108 (10) (2016) 102403-1-17.
[43] M. Levy, H. C. Yang, M. J. Steel and J. Fujita, Flat-Top Response in One-Dimensional Magnetic Photonic Bandgap Structures With Faraday Rotation Enhancement, J. Lightwave. Technol. 19 (12) (2001) 1964-1969.