Subject Areas : Journal of Optoelectronical Nanostructures
Saeed Olyaee 1 , Masood Sherafat 2
1 - Nano-photonics and Optoelectronics Research Laboratory (NORLab),
Shahid Rajaee Teacher Training University, Lavizan, 16788-15811,
Tehran, Iran, *Tel/Fax: +98-21-22970030.
2 - Nano-photonics and Optoelectronics Research Laboratory (NORLab),
Shahid Rajaee Teacher Training University, Lavizan, 16788-15811,
Tehran, Iran, *Tel/Fax: +98-21-22970030.
Keywords:
Abstract :
[1] M. L. Schattenburg and I. H. Smith. The critical role of metrology in nanotechnology. Proc. SPIE, 4608(1) (2002) 116-124.
Available:https://www.spiedigitallibrary.org/conference-proceedings-of-pie/4608/1
[2] F. C. Demarest. High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics. Meas. Sci. Technol. 9(7) (1998) 1024-1030.
Available: http://iopscience.iop.org/article/10.1088/0957-0233/9/7/003
[3] W. Estler, Tyler. High-accuracy displacement interferometry refin air. Appl. Opt. 24(6) (1985) 808-815.
Available: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-24-6-808
[4] N. Bobroff, Norman. Recent advances in displacement measuring interferometry. Meas. Sci. Technol. 4(9) (1993) 907-926.
Available: http://iopscience.iop.org/article/10.1088/0957-0233/4/9/001
[5] W. Hou, and Günter Wilkening. Investigation and compensation of the nonlinearity of heterodyne interferometers. Precision Eng. 14(2) (1992) 91-98.
Available: https://www.sciencedirect.com/science/article/pii/014163599290054Z
[6] K. Chen, Jing-Heng Chen, Shen-Hua Lu, Wei-Yao Chang, and Chi-Chang Wu. Absolute distance measurement by using modified dual-wavelength heterodyne Michelson interferometer. Opt. Commun. 282(9) (2009) 1837-1840.
Available: https://www.sciencedirect.com/science/article/pii/S003040180900042X
[7] A. Rezaei, B. Azizollah-Ganji, and M. Gholipour. Effects of the channel length on the nanoscale field effect diode performance. J. Optoelectronical Nanostructures. 3(2) (2018) 29-39.
Available: http://jopn.miau.ac.ir/article_2862.html
[8] A. Ju, Chaoyang Zhong, and Wenmei Hou. The effect of laser source and PBS on the nonlinearity in heterodyne interferometer. Optik-International Journal for Light and Electron Optics. 126(1) (2015) 112-115.
Available: https://www.sciencedirect.com/science/article/pii/S0030402614011978
[9] H. Hu, and Juju Hu. Relations between nonlinearity and PBS in heterodyne Michelson interferometer with different optical structures. Optik-International Journal for Light and Electron Optics, 126(24) (2015) 5061-5066.
Available: https://www.sciencedirect.com/science/article/pii/S0030402615012036
[10] W. Hou. Optical parts and the nonlinearity in heterodyne interferometers. Precision Eng. 30(3) (2006) 337-346.
Available: https://www.sciencedirect.com/science/article/pii/S0141635905001637
[11] J. Guo, Yan Zhang, and Shuai Shen. Compensation of nonlinearity in a new optical heterodyne interferometer with doubled measurement resolution. Opt. Commun. 184(1) (2000) 49-55.
Available: https://www.sciencedirect.com/science/article/pii/S0030401800009342
[12] W. Hou, Yunbo Zhang, and Haijiang Hu. A simple technique for eliminating the nonlinearity of a heterodyne interferometer. Meas. Sci. Technol. 20(10) (2009). 105303.
Available: http://iopscience.iop.org/article/10.1088/0957-0233/20/10/105303/meta
[13] S. Olyaee, R. Ebrahimpour, and S. Hamedi. Modeling and compensation of periodic nonlinearity in two-mode interferometer using neural networks. IETE J. Research. 56(2) (2010). 102-110.
Available: https://www.tandfonline.com/doi/abs/10.4103/0377-2063.63085
[14] S. J. A. G. Cosijns, Han Haitjema, and P. H. J. Schellekens. Modeling and verifying non-linearities in heterodyne displacement interferometry. Precision Eng. 26(4) (2002) 448-455.
Available: https://www.sciencedirect.com/science/article/pii/S0141635902001502
[15] S. Olyaee, S., and S. Mohammad Nejad. Nonlinearity and frequency-path modelling of three-longitudinal-mode nanometric displacement measurement system. IET Optoelectron. 1(5) (2007). 211-220.
Available: https://ieeexplore.ieee.org/document/4312812/
[16] S. Olyaee, T. H. Yoon, and S. Hamedi. Jones matrix analysis of frequency mixing error in three-longitudinal-mode laser heterodyne interferometer. IET Optoelectron. 3(5) (2009) 215-224.
Available: https://ieeexplore.ieee.org/document/5235434/
[17] S. Olyaee, and S. Hamedi. A low-nonlinearity laser heterodyne interferometer with quadrupled resolution in the displacement measurement. Arab. J. Sci. Eng. 36(2) (2011) 279-286.
Available: https://link.springer.com/article/10.1007/s13369-010-0017-5
[18] S. Olyaee, S. Hamedi, and Z. Dashtban. Efficient performance of neural networks for nonlinearity error modeling of three-longitudinal-mode interferometer in nano-metrology system. Precision Eng. 36(3) (2012) 379-387.
Available: https://www.sciencedirect.com/science/article/pii/S0141635912000037
[19] M. Sherafat and S. Olyaee. A nonlinearity error compensation method in nano-metrology system based on developed three-longitudinal mode heterodyne interferometer. Int. J. Mechatronics Appl. Mechanics. 3 (2018) 60-65.
Available: https://ijomam.com/issue3
[20] S. Yokoyama, T. Yokoyama, and T. Araki. High-speed subnanometre interferometry using an improved three-mode heterodyne interferometer. Meas. Sci. Technol. 16(9) (2005) 1841-1847.
Available: http://iopscience.iop.org/article/10.1088/0957-0233/16/9/017