Subject Areas : Journal of Optoelectronical Nanostructures
Nasrin Miri 1 , Abdolrasoul Gharaati 2
1 - Physics Department, Payame Noor University, Tehran, Iran
2 - Physics Department, Payame Noor University, Tehran, Iran
Keywords:
Abstract :
[1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phy. Rev. lett. 58 (1987) 2059.
[2] S. John, Strong localization of photons in certain disordered dielectric superlattices. Phy. Rev. Lett. 58(23) (1987) 2486.
[3] Lončar M, Vučković J, and Scherer A,. Methods for controlling positions of guided modes of photonic-crystal waveguides, J. Opt. Soc. Am. B 18 (2001)1362-1368.
[4] Kurt H, Citrin D S,. Photonic-crystal heterostructure waveguides, IEEE J. Quant. Electron. 43 (2007) 78-84.
[5] Zhou W D, Sabarinathan J, Bhattacharya P, Kochman B, Berg E, Yu P C, and Pang S,. Characteristics of a photonic bandgap single defect microcavity electroluminescent device, IEEE J. Quant. Electron. 37 (2001) 1153-1160.
[6] Luo C, Johnson S G, Joannopoulos J., Pendry J,. All-angle negative refraction without negative effective index. Phys. Rev. B. 65(20) (2002) 201104.
[7] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, et al. Superprism phenomena in photonic crystals. Phys. Rev. B. 58(16) (1998) R10096.
[8] Amet J, Baida F I, Burr G W , Bernal M P,. The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching. PHOTONIC NANOSTRUCT. 6(1) (2008) 47-59.
[9] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, et al. Self-collimating phenomena in photonic crystals. Appl. Phys. Lett. 74(9) (1999) 1212-4.
[10] Kim T T, Lee S G, Park H Y, Kim J E, Kee C S,. Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals. Opt. Express. 18(6) (2010) 5384-9.
[11] E. Centeno, D. Cassagne, Graded photonic crystals. Opt. Lett. 30 (2005) 2278-2280.
[12] E. Centeno, D. Cassagne, J. P.Albert, Mirage and superbending effect in two-dimensional graded photonic crystals. Phys. Rev. B. 73(23) (2006) 235119.
[13] Turduev M, Oner B, Giden I, and Kurt H,. Mode transformation using graded photonic crystals with axial asymmetry, J. Opt. Soc. Am. B 30 (2013) 1569-1579.
[14] Oner B B, Turduev M, Giden I H, and Kurt H,. Efficient mode converter design using asymmetric graded index photonic structures. Opt. lett. 38(2) (2013) 220-222.
[15] Kurt H, Oner B B, Turduev M, and Giden I H,. Modified Maxwell fish-eye approach for efficient coupler design by graded photonic crystals. Opt. express. 20(20) (2012) 22018-22033.
[16] Yilmaz D, Giden I H, Turduev M, and Kurt H,. Design of a Wavelength selective medium by graded index photonic crystals. IEEE J. Quant. Electron. 49(5) (2013) 477-484.
[17] Le Roux X, Caer C, Marris-Morini D, Izard N, Vivien L, and Cassan E,. Wavelength demultiplexer based on a two-dimensional graded photonic crystal. IEEE PHOTONIC TECH L. 23(15) (2011) 1094-1096.
[18] Turduev M, Giden I H, and Kurt H,. Design of flat lens-like graded index medium by photonic crystals: Exploring both low and high frequency regimes. Opt. Commun. 339 (2015) 22-33.
[19] H. Kurt, D. S. Citrin, Graded index photonic crystals. Opt. Express. 15(1240-1253), 3, (2007).
[20] H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, The focusing effect of graded index photonic crystals. Appl. Phys. Lett, 93(171108), (2008).
[21] Wang, H.W., & Chen, L.W. A cylindrical optical black hole using graded index photonic crystals. J. Appl. Phys. 109(103104), 10, (2011).
[22] E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, & J.M. Lourtioz, Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect. Appl. Phys. Lett. 92(133501), 13, (2008).
[23] A. O. Cakmak, E. Colak, H. Caglayan, , H. Kurt, E. Ozbay, High efficiency of graded index photonic crystal as an input coupler. J. Appl. Phys. 105(103708), 10, (2009).
[24] M. Lu, B. K. Juluri, , S.C. S. Lin, B. Kiraly, T. Gao, T. J. Huang, Beam aperture modifier and beam deflector using gradient-index photonic crystals. J. Appl. Phys. 108(103505), 10, (2010).
[25] N. Yogesh, V. Subramanian, Spatial beam compression and effective beam injection using triangular gradient index profile photonic crystals. Prog. Electromagn. Res. 129 (2012) 51-67.
[26] M. Turduev, I. H. Giden, H. Kurt, Design of flat lens-like graded index medium by photonic crystals: Exploring both low and high frequency regimes. Opt. Commun. 339 (2015) 22-33.
[27] B. Vasić, R. Gajić, K. Hingerl, Graded photonic crystals for implementation of gradient refractive index media. Journal of Nanophotonics, 5(051806-051806-051807) (2011) 1.
[28] A. Taflove, , S. C. Hagness, Computational Electrodynamics: ''The Finite-Difference Time-Domain Method'' , 2nd Ed Artech House Publishers, 2005.
[29] Sukhoivanov, Igor A., and Igor V. Guryev. Photonic crystals: physics and practical modeling. Vol. 152. Springer, 2009.
[30] Gomez-Reino C, Perez MV, Bao C. Gradient-index optics: fundamentals and applications. Springer Science & Business Media, 2012.
[31] Notomi, á., Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B, (2000). 62(16) 10696.
[32] Aspnes, D. Local-field effects and effective-medium theory: A microscopic perspective. Am. J. Phys. (1982) 50(8).
[33] Sihvola, A.H., Electromagnetic mixing formulas and applications, pp. 39-84, the Institution of Electrical Engineers, London, United Kingdom (1999).
[34] Kirchner, A., K. Busch, and C. Soukoulis, Transport properties of random arrays of dielectric cylinders. Phys. Rev. B. 57(1) (1998) 277.
[35] Halevi, P., A. Krokhin, and J. Arriaga, Photonic crystal optics and homogenization of 2D periodic composites. Phys. Rev. lett. 1999. 82(4) (1999) 719.