References:
1- Agalbjorn, S., N. Končar, and A. J. Jones.1997. A note on the gamma test. NeuralComput. Applic. 5(3): 131–133.
2- Bruton, J. M., R. W. McClendon, and G.Hoogenboom. 2000. Estimating daily panEvaporation with artificial neural network.Trans. ASAE. 43(2): 492-4962.
3- Durrant, P.J. 2001. winGamma: A nonlineardata analysis and modelling tool withapplications to flood prediction. PhD thesis,Department of Computer Science, CardiffUniversity, Wales, UK
4- Fletcher, R. 1987. Practical methods ofoptimization (2nd ed.). New York: Wiley.
5- Gardner, W. R. 1958. Some steady-statesolutions of the unsaturated moisture flow
equation with applications to evaporation froma water table. Soil Sci. 85: 228–232.
6- Gowing, J. W., F. Konukcu, and D. A.Rose. 2006. Evaporative flux from a
shallow watertable: The influence of avapour–liquid phase transition. J. Hydrol.321: 77–89.
7- Hillel, D. 1998. Environment to soilphysics. Academic Press. New York
8- Jain, S. K., A. Das, and D. k. Srivastsva.1999. Application of ANN for reservoir inflowprediction and operation. J. Water Resour.Plan. Manage. 125(5): 263-271
9- Keskin, M. E., and O. Terzi. 2006. Artificialneural networks models of daily panevaporation. J. Hydrol. Engin. 11(1): 65–70.
10- Kim, S., and H. S. Kim. 2008. Neuralnetworks and genetic algorithm approach for
nonlinear evaporation and evapotranspirationmodeling. J. Hydrol. 351: 299-317.
11- Kisi, O. 2006. Generalized regressionneural networks for evapotranspirationmodeling. Hydrol. Sci. J. 51(6): 1092–1105.
12- Kisi, O. 2007. Evapotranspirationmodeling from climatic data using a neuralcomputing technique. Hydrol. Proc. 21: 1925–1934.
13- Konukcu, F., A. Istanbulluoglu, and I.Kocaman. 2004. Simultaneous use of newlyadopted simple sensors for continuousmeasurement of soil moisture and salinity.Aust. J. Soil Res. 41: 309-321.
14- Lindsey, S. D., and R. K. Farnsworth.1997. Sources of solar radiation estimatesand their effect on daily potential
evaporation for use in streamflowmodeling. J. Hydrol. 201: 348–366.
15- Moghaddamnia, A., M. Ghafari, J. Piri,and D. Han. 2008. Evaporation estimationusing support vector machines techniqueproceedings of world academy of science.Engin. Techno. 33: 14–22.
16- Penrose, R.. 1955. A generalized inversefor matrices. Proceedings of the CambridgePhilosophical Society. 51: 406–413.
17- Penrose, R. 1956. On best approximatesolution of linear matrix equations.Proceedings of the Cambridge PhilosophicalSociety. 52: 17–19.
18- Remesan, R., M. A. Shamim, and D. Han.2008. Model data selection using Gamma testfor daily solar radiation estimation. Hydrol.Proc. 22: 4301–4309.
19- Rose, D. A., F. Konukcu, and J. W.Gowing. 2005. Effect of watertable depth
on evaporation and salt accumulation abovesaline groundwater. Aust. J. Soil Res. 43:565–573.
20- Stefansson, A., N. Koncar, and A. J. Jones.1997. A note on the Gamma test. NeuralComp. Applic. 5: 131-133.
21- Sudheer, K. P., A. K. Gosain, and K. S.Ramasastri. 2003. Estimating actualevapotranspiration from limited climatic datausing neural computing technique. J. Irrig.Drain. Engin. 129(3): 214–218.
22- Trajkovic, S., B. Todorovic, and M.Stankovic. 2003. Forecasting referenceevapotranspiration by artificial neuralnetworks. J. Irrig. Drain. Engin. 129(6): 454–457.
23- Tsui, A. P. M., A. J. Jones, and A. Guedesde Oliveira. 2002. The construction of smoothmodels using irregular embeddings determinedby a gamma test analysis. Neural Comp.Applic. 10(4): 318–329.
24- Xu, C.Y., and V. P. Singh. 1998.Dependence of evaporation on meteorologicalvariables at different time-scales and
intercomparison of estimation methods.Hydrol. Proc. 12(3): 429–442.
25- Zarei, G., M. Homaee, A. M., Liaghat, andA. H. Hoorafar. 2010. A model for soil surfaceevaporation based on campbll’s retentioncurve. J. Hydrol. 380: 356-361.