Determination Optimum Boron Quantity Effect on Low Temperature Impact Energy of Mild Steel Weld Metal that Fabricated by Submerge Arc Welding (SAW)
Subject Areas : journal of New MaterialsSh Shafinia 1 , Sh Mirdamadi 2 , حامد Sabet 3 , S. R Amirabadizade 4
1 - دانشجوی کارشناسی ارشد مهندسی جوشکاری- دانشگاه آزاد اسلامی واحد علوم و تحقیقات
2 - استاد دانشکده مهندسی مواد دانشگاه علم و صنعت ایران
3 - استادیار گروه مهندسی مواد و متالورژی دانشگاه آزاد اسلامی واحد کرج
4 - عضو هیئت علمی گروه مهندسی مکانیک دانشگاه آزاد اسلامی واحد تهران جنوب
Keywords: Low Carbon Steel, Boron, Weld Metal Toughness, Acicular Ferrite,
Abstract :
This study was carried out to determine the optimum of boron quantity affect on low temperature impact energy of the mild steel weld metals fabricated by submerge arc welding (SAW). For this reason some plates of ST 37 in 10× 150 × 200 mm dimensions prepared and welded by SAW. Boron as the oxide powder, added and mixed with flux powder.After welding the OM, SEM, impact and micro hardness tests were carried out for different samples of the weld metals. The results of the chemical analysis of different samples confirmed presence of 20, 30, 60, 70 and 110 ppm boron in weld metals. The OM result shows that in sample containing 20ppm boron, acicular ferrite was increased and polygonal ferrite, grainboundary and widmenstatten ferrite was decreased.Relative to original samples by increasing of the boron from 20 to 110ppm often polygonal, grainboundary and widmenstatten ferrite were formed. The microhardness test result showed that sample contained 20 ppm boron has the highest hardness compared to other samples. The impact test results showed that the high impact energy for sample contains 20 ppm boron at the three ambient, zero and -20 °C. The fractography result showed that, brittle fracture share for sample contains 20 ppm boron with the highest impact energy was 10 percent and for sample contains 110 ppm boron with the lower impact energy about 50 percent.
of High Toughness Ferrite Wire for Submerged Arc Welding of Pipeline Steel”, Materials Characterization, Vol.47, pp. 67– 73, 2001.
2- م ترحم نژاد و ر دهلمائی و ص معینی فر، " بررسی حرارت ورودی فرآیند GTAW بر خوردگی اتصالات جوش فولاد زنگ نزن دوفازی 2205"، مجله مواد نوین، جلد5، شماره1، پاییز1393.
3- P. Ernst,“Effect of Boron on The Mechanical Properties of Modified 12 % Chromium Steels”, PhD. Thesis, Swiss Federal Institute of Technology Zurich, 1988.
4- ا رحیمی و م حسینیون و و شکوهی، " اثر TiوB در چقرمگی جوش های کم آلیاژی مولیبدنی به روش زیر پودری در دو حالت دو پاسه و چند پاسه"، هشتمین کنفرانس ملی جوش و بازرسی ایران ، تهران، صفحات250-263، 1386.
5- N. Mori, H. Homma, M. WakabaYashi, and S. Okita,“Characteristics of Mechanical Properties of Ti-B Bearing Weld Metals”, IIW Doc. 2- 980, 1982.
6- ا ابراهیمی، "بررسی حرارت ورودی و عناصر اکسیژن و نیتروژن و بور بر چقرمگی فلز جوش SAW لوله های با جداره های ضخیم"، همایش فرآیند جوشکاری قوسی زیر پودری(اتوماتیک)، شرکت صنعتی آما ، 1377.
7- D. Ren, F. Xiao, P. Tian, X. Wang, and B. Liao, “Effects of Welding Wire Composition and Welding Process on The Weld Metal Toughness of Submerged Arc Welded Pipeline Steel”, International Journal of Minerals, Metallurgy and Materials, Vol. 16, Number 1, pp. 65-71, 2009.
8- D. W. Oh, D. L. Olson, and R. H. Frost, “The Influence of Boron and Titanium on
Low-Carbon Steel Weld Metal”, Welding Research Supplement, Washington-D.C, pp. 151-158,1990.
9- D. J. Widgery, “New Idea in SAW”, Trends in Steels and Consumables International Conference, London, pp. 26-40,1978.
10- H. W. Lee,“The Relationship between Boron Content and Crack Properties in FCAW Deposited Metal”, Welding Journal,Busan City, Korea,pp.131-136, 2006.
11- T. Khoshioet,“Development of the High COD Ti-B Bearing Covered Electrode”, IIW, Doc.2, 955, 1981.
12- C. P. Ravichandran,“Ifluence of Ti-B Microalloying Additions on Sub-Zero Notch-Toughness of AWS E7018 Electrode All-Weld Metal Deposits”, Welding Research Institute, BHEL, India, 2001.
13- J. H. Devletian and R. W. Heine,“Grain Refining Effect of Boron in Carbon Steel Welds”, Welding Research Supplement, pp. 529-538,1973.
14- ع ولی نژاد،"جدول و استانداردهای فولاد (کلید فولاد)"، چاپ دهم، انتشارات طراح، 1391.
15- ح ثابت، "تکنولوژی و متالورژی جوشکاری"، نشر فنی امیر، صفحات 43-48،1387.
16- C. Long and N. sayma,“Heat Transfer”,Ventus Publishing ApS, 2009.
17- W. Chen, M.C. Chaturvedi, N.L. Richards, and G. Mahon “Grain Boundary Segregation of Boron in INCONEL 718”, Metallurgical and Materials Transactions, Vol. 29A, pp. 1947-1955, 1998.
18- S. Kou, “Welding Metallurgy”, 2nd Ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.
19-N.Haracic,“Bor and Boron Low Alloyed Steels for Carburisation and Direct Quenching”, Masinstvo Journal, Sarajevo, pp. 215-226, 2002.
20- -T.V. Rompaey, K.C.H. Kumar, and P. Wollants “Thermodynamic Optimization of The B–Fe System”, Journal of Alloys and Compounds 334, pp. 173–181, -2002.
21-G.E.Totten, “Steel Heat Treatment: Metallurgy and Technology”, 2nd Ed., CRC press- Taylor&Francis Group, pp. 194, 2007.
22-W.Leslie,“The Physical Metallurgy of Steels”, MC Graw-Hill, Tokyo-Japan,p. 279, 1981.
23- G. J. Davies and J. G. Garland,“Solidification Structures and Propertiesof Fusion Welds”, International metallurgical Reviews, Vol. 20, New York, pp. 83-106, 1975.
24- Metal`s Handbook,vol 4, Heat Treating, ASM, 1991.
25- راهنمای فنی محصولات تولیدی شرکت صنعتی آما- چاپ بیست و دوم- 1392.