Interaction between biological tissues and extremely low frequency fields
Subject Areas : Communication Engineering
1 - Department of Electrical Engineering, Boushehr Branch, Islamic Azad University, Boushehr, Iran
Keywords: Electric Fields, Magnetic Fields, Biological Effects, Extremely Low Frequency.,
Abstract :
Studing biological effects of electromagnetic fields is an attractive subject for researchers all of the world. The extremely low frequency fields frequency band (0-3KHz) is very applicable in the human life because of its benefits and utilizations. In this paper it is tried to investigate the biological effects of extremely low frequency fields (50/60 Hz) on biological effects of electromagnetic fields. It is due to computers, shavers, TVs, hair dryers and other low frequency devices. Some systems and equipment such as high voltage transmission lines are extremely low frequency fields sources too. The effects of these sources are divided into thermal and non-thermal which in turn focus on micronucleus formation, DNA strand, chromosome effects, enzyme activity, cell proliferation, leukemia, effects on memory and learning, brain tumor and effects on nervous system. Some exposure standard limits are introduced from IEEE and ICNIRP. Also, standard values and protection for human safety against extremely low frequency fields are proposed.
[1] F. S. Alqurashi, A. Trichili, N. Saeed, B. S. Ooi, and M.-S. Alouini, “Maritime Communications: A Survey on Enabling Technologies, Opportunities, and Challenges,” IEEE Internet of Things Journal, pp. 1–1, 2022, doi: https://doi.org/10.1109/jiot.2022.3219674.
[2] H. Aliyari, H. Sahraei, S. Gholabi, M.B. Menhaj, M. Kazemi, and Seyed Hossein Hosseinian, “The Effect of Electrical Fields From High-voltage Transmission Line on Cognitive, Biological, and Anatomical Changes in Male Rhesus macaque Monkeys Using MRI: A Case Report Study,” Basic and clinical neuroscience, vol. 13, no. 4, pp. 433–442, Jul. 2022, doi: https://doi.org/10.32598/bcn.2021.1340.3.
[3] Asaad Shemshadi and Pourya Khorampour, “Novel Electric Field Exposure Control Methods for Multi-Story Buldings Installed in Vicinity of High-Voltage Apparatus Using FEM,” ASEAN Engineering Journal, vol. 11, no. 4, pp. 179–203, Oct. 2021, doi: https://doi.org/10.11113/aej.v11.17872.
[4] X. Zhang, “Magnetic Field Parameters and Biological Sample Differences That Lead to Differential Bioeffects,” pp. 1–30, Jan. 2023, doi: https://doi.org/10.1007/978-981-19-8869-1_1
[5] P. Stavroulakis, Biological Effects of Electromagnetic Fields. Springer Science & Business Media, 2013.
[6] M. Feychting, A. Ahlbom, and L. Kheifets, “EMF AND HEALTH,” Annual Review of Public Health, vol. 26, no. 1, pp. 165–189, Apr. 2005, doi: https://doi.org/10.1146/annurev.publhealth.26.021304.144445.
[7] G. Vianale, M. Reale, P. Amerio, M. Stefanachi, S. Di Luzio, and R. Muraro, “Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production,” British Journal of Dermatology, vol. 158, no. 6, pp. 1189–1196, Jun. 2008, doi: https://doi.org/10.1111/j.1365-2133.2008.08540.x.
[8] C. D’Angelo, E. Costantini, M. A. Kamal, and M. Reale, “Experimental model for ELF-EMF exposure: Concern for human health,” Saudi Journal of Biological Sciences, vol. 22, no. 1, pp. 75–84, Jan. 2015, doi: https://doi.org/10.1016/j.sjbs.2014.07.006.
[9] D. Belpomme, L. Hardell, I. Belyaev, E. Burgio, and D. O. Carpenter, “Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective,” Environmental Pollution, vol. 242, pp. 643–658, Nov. 2018, doi: https://doi.org/10.1016/j.envpol.2018.07.019.
[10] A. Lak, “Evaluation of Biological Effects of Extremely Low Frequency Fields on human body,” The national conference of electrical engineering and computer science of south of Iran, April 2013.
[11] A. Lak and Homayoon Oraizi, “Evaluation of SAR Distribution in Six-Layer Human Head Model,” International Journal of Antennas and Propagation, vol. 2013, pp. 1–8, Jan. 2013, doi: https://doi.org/10.1155/2013/580872.
[12] M. Biesuz, T. Saunders, D. Ke, M. J. Reece, C. Hu, and S. Grasso, “A review of electromagnetic processing of materials (EPM): Heating, sintering, joining and forming,” Journal of Materials Science & Technology, vol. 69, pp. 239–272, Apr. 2021, doi: https://doi.org/10.1016/j.jmst.2020.06.049.
[13] C. J. Hu and F. S. Barnes, “A simplified theory of pearl chain effects,” Radiation and Environmental Biophysics, vol. 12, no. 1, pp. 71–76, Jun. 1975, doi: https://doi.org/10.1007/bf02339811.
[14] http://www.environmentalhealth.ir
[15] http://www.radiologyandphysicalmedicine.es
[16] R. Y. Habash, Electromagnetic radiation and safety, Taylor & Francis Group, 2018.
[17] WHO Magnetic fields, Environmental health criteria, Genova, World Health Orgenization, 1987.
[18] Per Lövsund, P. Öberg, G. Nilsson, and T. Reuter, “Magnetophosphenes: a quantitative analysis of thresholds,” Medical & Biological Engineering & Computing, vol. 18, no. 3, pp. 326–334, May 1980, doi: https://doi.org/10.1007/bf02443387.
[19] J. Patrick Reilly, Applied Bioelectricity. Springer Science & Business Media, 2012.
[20] T. Wessapan, P. Rattanadecho, N. Somsuk, M. Yamfang, M. Guptasa, and P. Montienthong, “Thermal Effects of Electromagnetic Energy on Skin in Contact with Metal: A Numerical Analysis,” Energies, vol. 16, no. 16, p. 5925, Jan. 2023, doi: https://doi.org/10.3390/en16165925.
[21] Hye Sun Kim et al., “Effect of Exposure to a Radiofrequency Electromagnetic Field on Body Temperature in Anesthetized and Non‐Anesthetized Rats,” Bioelectromagnetics, vol. 41, no. 2, pp. 104–112, Dec. 2019, doi: https://doi.org/10.1002/bem.22236.
[22] ICNIRP Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields(up to 300GHz), 2020.
[23] ICNIRP General approach to protection against non-ionizing radiation, Health physics, 2002.
[24] R. Torchio, A. Arduino, Luca Zilberti, and Oriano Bottauscio, “A fast tool for the parametric analysis of human body exposed to LF electromagnetic fields in biomedical applications,” Computer Methods and Programs in Biomedicine, vol. 214, pp. 106543–106543, Feb. 2022, doi: https://doi.org/10.1016/j.cmpb.2021.106543.
[25] J. Malmivuo and R. Plonsey, Bioelectromagnetism : principles and applications of bioelectric and biomagnetic fields. New York, N.Y. ; Oxford: Oxford University Press, 2002.
[26] Y. Jiao, F. Cao, and H. Liu, “Radiation-induced Cell Death and Its Mechanisms,” Health Physics, vol. 123, no. 5, pp. 376–386, Sep. 2022, doi: https://doi.org/10.1097/hp.0000000000001601.
[27] H. Lai and B. B. Levitt, “Cellular and molecular effects of non-ionizing electromagnetic fields,” Reviews on Environmental Health, vol. 0, no. 0, Apr. 2023, doi: https://doi.org/10.1515/reveh-2023-0023.
[28] J B. Little, “Cellular, Molecular, and Carcinogenic Effects of Radiation,” Hematology/Oncology Clinics of North America, vol. 7, no. 2, pp. 337–352, Apr. 1993, doi: https://doi.org/10.1016/s0889-8588(18)30244-2.
[29] C. T. Mihai, P. Rotinberg, F. Brinza, and G. Vochita, “Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells,” Journal of Environmental Health Science and Engineering, vol. 12, p. 15, Jan. 2014, doi: https://doi.org/10.1186/2052-336X-12-15.
[30] A. M. Khalil and W. Qassem, “Cytogenetic effects of pulsing electromagnetic field of human lymphocytes in vitro: chromosome aberrations, sister-chromatid exchanges and cell kinetics,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 247, no. 1, pp. 141–146, Mar. 1991, doi: https://doi.org/10.1016/0027-5107(91)90041-l.
[31] Junji Miyakoshi, M. Yoshida, K. Shibuya, and M. Hiraoka, “Exposure to Strong Magnetic Fields at Power Frequency Potentiates X-ray-induced DNA Strand Breaks,” vol. 41, no. 3, pp. 293–302, Sep. 2000, doi: https://doi.org/10.1269/jrr.41.293.
[32] H. C. Lai and N. P. Singh, “Medical applications of electromagnetic fields,” IOP Conference Series: Earth and Environmental Science, vol. 10, p. 012006, Apr. 2010, doi: https://doi.org/10.1088/1755-1315/10/1/012006.
[33] A. Karimi, Farzaneh Ghadiri Moghaddam, and Masoumeh Valipour, “Insights in the biology of extremely low-frequency magnetic fields exposure on human health,” Molecular Biology Reports, vol. 47, no. 7, pp. 5621–5633, Jun. 2020, doi: https://doi.org/10.1007/s11033-020-05563-8.
[34] R. Zendehdel, I. J. Yu, B. Hajipour-Verdom, and Z. Panjali, “DNA effects of low level occupational exposure to extremely low frequency electromagnetic fields (50/60 Hz),” Toxicology and Industrial Health, vol. 35, no. 6, pp. 424–430, May 2019, doi: https://doi.org/10.1177/0748233719851697.
[35] A. Antonopoulos, B. Yang, A. Stamm, W.-D. . Heller, and G. Obe, “Cytological effects of 50 Hz electromagnetic fields on human lymphocytes in vitro,” Mutation Research Letters, vol. 346, no. 3, pp. 151–157, Mar. 1995, doi: https://doi.org/10.1016/0165-7992(95)90047-0.
[36] H. Yaguchi, M. Yoshida, G. R. Ding, K Shingu, and J Miyakoshi, “Increased chromatid-type chromosomal aberrations in mouse m5S cells exposed to power-line frequency magnetic fields,” International Journal of Radiation Biology, vol. 76, no. 12, pp. 1677–1684, Jan. 2000, doi: https://doi.org/10.1080/09553000050201172.
[37] H. Yaguchi, M. Yoshida, Yosuke Ejima, and Junji Miyakoshi, “Effect of high-density extremely low frequency magnetic field on sister chromatid exchanges in mouse m5S cells,” vol. 440, no. 2, pp. 189–194, Apr. 1999, doi: https://doi.org/10.1016/s1383-5718(99)00027-3.
[38] I. Nordenson, Kjell Hansson Mild, G. Andersson, and M. Sandström, “Chromosomal aberrations in human amniotic cells after intermittent exposure to fifty hertz magnetic fields,” Bioelectromagnetics, vol. 15, no. 4, pp. 293–301, Jan. 1994, doi: https://doi.org/10.1002/bem.2250150404.
[39] وفایی راد م.، اثرآنتی اکسیدانتی ویتامین C در کاهش آسیب های کروموزومی القا شده توسط میدان الکترومغناطیسی با فرکانس پایین در اریتروسیت های مغز استخوان موش کوچک آزمایشگاهی، فصلنامه سلول و بافت، 1391.
[40] S. Koyama, T. Nakahara, K. Wake, M. Taki, Yasuhito Isozumi, and Junji Miyakoshi, “Effects of high frequency electromagnetic fields on micronucleus formation in CHO-K1 cells,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 541, no. 1–2, pp. 81–89, Nov. 2003, doi: https://doi.org/10.1016/j.mrgentox.2003.07.009.
[41] M. R. Scarfì et al., “50 Hz AC Sinusoidal Electric Fields Do Not Exert Genotoxic Effects (Micronucleus Formation) in Human Lymphocytes,” Radiation Research, vol. 135, no. 1, pp. 64–64, Jul. 1993, doi: https://doi.org/10.2307/3578397.
[42] M. Simkó, Ralf Kriehuber, and S. Lange, “Micronucleus formation in human amnion cells after exposure to 50 Hz MF applied horizontally and vertically,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 418, no. 2–3, pp. 101–111, Oct. 1998, doi: https://doi.org/10.1016/s1383-5718(98)00116-8.
[43] E. Saalman, Agneta Önfelt, and B. Gillstedt-Hedman, “Lack of c-mitotic effects in V79 Chinese hamster cells exposed to 50 Hz magnetic fields,” Bioelectrochemistry and Bioenergetics, vol. 26, no. 2, pp. 335–338, Oct. 1991, doi: https://doi.org/10.1016/0302-4598(91)80034-z.
[44] M. R. Scarfi, M. B. Lioi, O. Zeni, M Della Noce, C. Franceschi, and F. Bersani, “Micronucleus frequency and cell proliferation in human lymphocytes exposed to 50 Hz sinusoidal magnetic fields,” Health Physics, , vol. 76, no. 3, pp. 244–250, Mar. 1999, doi: https://doi.org/10.1097/00004032-199903000-00005.
[45] Y. Cho, “The effect of extremely low frequency electromagnetic fields (ELF-EMF) on the frequency of micronuclei and sister chromatid exchange in human lymphocytes induced by benzo(a)pyrene,” Toxicology Letters, vol. 143, no. 1, pp. 37–44, Jun. 2003, doi: https://doi.org/10.1016/s0378-4274(03)00111-5.
[46] Y. Cho, “The effect of extremely low frequency electromagnetic fields (ELF-EMF) on the frequency of micronuclei and sister chromatid exchange in human lymphocytes induced by benzo(a)pyrene,” Toxicology Letters, vol. 143, no. 1, pp. 37–44, Jun. 2003, doi: https://doi.org/10.1016/s0378-4274(03)00111-5.
[47] M. Martínez, A. Úbeda, J. Moreno, and M. Trillo, “Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals,” International Journal of Molecular Sciences, vol. 17, no. 4, pp. 510–510, Apr. 2016, doi: https://doi.org/10.3390/ijms17040510.
[48] M. Barati et al., “Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis,” Cell Proliferation, Nov. 2021, doi: https://doi.org/10.1111/cpr.13154.
[49] J. Schimmelpfeng and H Dertinger, “Action of a 50 Hz magnetic field on proliferation of cells in culture, ” Bioelectromagnetics 18:177–183.1997, https://doi.org/10.1002/(sici)1521186x(1997)18:2<177::aid-bem11>3.0.co;2-o.
[50] S. Kwee and P. Raskmark, “Changes in cell proliferation due to environmental non-ionizing radiation 1. ELF electromagnetic fields,” Bioelectrochemistry and Bioenergetics, vol. 36, no. 2, pp. 109–114, Mar. 1995, doi: https://doi.org/10.1016/0302-4598(94)01760-x.
[51] R. P. Liburdy, T. R. Sloma, R. Sokolic, and P. Yaswen, “ELF magnetic fields, breast cancer, and melatonin: 60 Hz fields block melatonin’s oncostatic action on ER+breast cancer cell proliferation,” Journal of Pineal Research, vol. 14, no. 2, pp. 89–97, Mar. 1993, doi: https://doi.org/10.1111/j.1600079x.1993.tb00491.x.
[52] J.D. Harland, R.P. Liburdy, “Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line,” Bioelectromagnetics,1997.https://doi.org/10.1002/(sici)1521-186x(1997)18:8<555::aid-bem4>3.0.co;2-1.
[53] F. Bersani, Electricity and Magnetism in Biology and Medicine. Boston, MA: Springer US, 1999.
B. Selmaoui, A. Bogdan, A. Auzeby, J. Lambrozo and Y. Touitou, “Acute exposure to 50 Hz magnetic field does not affect hematologic or immunologic functions in healthy young men: a circadian study,” Bioelectromagnetics. 1996. doi: 10.1002/(SICI)1521-186X(1996)17:5<364::AID-BEM3>3.0.CO;2-1.
L. Bonhomme-Faivre, S. Marion, F. Forestier, R. Santini, and H. Auclair, “Effects of Electromagnetic Fields on the Immune Systems of Occupationally Exposed Humans and Mice,” Archives of Environmental Health: An International Journal, vol. 58, no. 11, pp. 712–717, Nov. 2003, doi: https://doi.org/10.3200/aeoh.58.11.712-717.
[54] F. Brisdelli, F. Bennato, A. Bozzi, B. Cinque, F. Mancini, and R. Iorio, “ELF-MF attenuates quercetin-induced apoptosis in K562 cells through modulating the expression of Bcl-2 family proteins,” Molecular and Cellular Biochemistry, vol. 397, no. 1–2, pp. 33–43, Aug. 2014, doi: https://doi.org/10.1007/s11010-014-2169-1.
[55] M. Barati et al., “Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis,” Cell Proliferation, Nov. 2021, doi: https://doi.org/10.1111/cpr.13154.
[56] S. Dasdag, C. Sert, Z. Akdag, and S. Batun, “Effects of extremely low frequency electromagnetic fields on hematologic and immunologic parameters in welders,” Archives of Medical Research, vol. 33, no. 1, pp. 29–32, 2002, doi: https://doi.org/10.1016/s0188-4409(01)00337-x.
[57] T. A. Litovitz, D. Krause, M. Penafiel, E. C. Elson, and J. M. Mullins, “The role of coherence time in the effect of microwaves on ornithine decarboxylase activity,” Bioelectromagnetics, vol. 14, no. 5, pp. 395–403, Jan. 1993, doi: https://doi.org/10.1002/bem.2250140502.
[58] A. Morelli, S. Ravera, I. Panfoli, and I. M. Pepe, “Effects of extremely low frequency electromagnetic fields on membrane-associated enzymes,” Archives of Biochemistry and Biophysics, vol. 441, no. 2, pp. 191–198, Sep. 2005, doi: https://doi.org/10.1016/j.abb.2005.07.011.
[59] A. Wasak, R. Drozd, D. Jankowiak, and R. Rakoczy, “Rotating magnetic field as tool for enhancing enzymes properties - laccase case study,” Scientific Reports, vol. 9, no. 1, Mar. 2019, doi: https://doi.org/10.1038/s41598-019-39198-y.
[60] گل محمدی ع.، هندبوک ایمنی در برق ، انتشارات گل محمدی، 1394.
[61] نوشاد ب. ، ایمنی در برق، انتشارات علم آفرین، 1390.
[62] https://www.irpa.net/
[63] M. Garfinkel, S. Hosler, M. Roberts, J. Vogt, C. Whelan, and E. Minor, “Balancing the management of powerline right-of-way corridors for humans and nature,” Journal of Environmental Management, vol. 330, pp. 117175–117175, Mar. 2023, doi: https://doi.org/10.1016/j.jenvman.2022.117175.
[64] https://www.icnirp.org
[65] https://standards.ieee.org
[66] H. Tian et al., “System-level biological effects of extremely low-frequency electromagnetic fields: an in vivo experimental review,” Frontiers in Neuroscience, vol. 17, Oct. 2023, doi: https://doi.org/10.3389/fnins.2023.1247021.
[67] www.safety.rochester.edu
[68] https://www.cdc.gov
[69] C. Carles et al., “Residential proximity to power lines and risk of brain tumor in the general population,” Environmental Research, vol. 185, p. 109473, Jun. 2020, https://doi.org/10.1016/j.envres.2020.109473.
[70] C. Malagoli et al., “Residential exposure to magnetic fields from high-voltage power lines and risk of childhood leukemia,” Environmental Research, vol. 232, pp. 116320–116320, Sep. 2023, doi: https://doi.org/10.1016/j.envres.2023.116320.
[71] C. Brabant, A. Geerinck, C. Beaudart, E. Tirelli, C. Geuzaine, and O. Bruyère, “Exposure to magnetic fields and childhood leukemia: a systematic review and meta-analysis of case-control and cohort studies,” Reviews on Environmental Health, vol. 38, no. 2, pp. 229–253, Mar. 2022, doi: https://doi.org/10.1515/reveh-2021-0112.
[72] الف. تكيه، و همکاران، بررسی اثر میدانهای الکترومغناطیس با فرکانس بسیار پایین بر یادگیری و حافظه بینایی و ساختار آناتومیکی مغز در میمون¬های رزوس نر، دو ماهنامه طب جنوب، 1397.
[73] H. Abkhezr, Sh. Babri, M. Farid-Habibi, F. Farajdokht and S. Sadigh Eteghad, , “Effect of prenatal exposure to stress and extremely lowfrequency electromagnetic field on hippocampal and serum BDNF levels in male adult rat offspring,” Iranian Journal of Basic Medical Sciences, 2024. doi: https://dx.doi.org/10.22038/IJBMS.2024.75459.16357.
[74] R. Eskandani and M. I. Zibaii, “Unveiling the biological effects of radio-frequency and extremely-low frequency electromagnetic fields on the central nervous system performance,” Bioimpacts. 2024. doi: 10.34172/bi.2023.30064