Recognition the effective traits on grain yield of bread wheat genotypes under heat stress and non-stress conditions
Subject Areas :
Agroecology Journal
Hossein Ali Fallahi
1
,
atefeh kaviani charati
2
,
Abbas ali Andarkhor
3
1 - Agronomic and Horticultural Research Department, Research and Education Center of Agriculture and Natural Resources in Mazandaran, Agricultural Extension and Education Research Organization, Sari, Iran
2 - Department of Agricultural Biotechnology, Gonbad Kavous University, Gonbad Kavous, Iran
3 - Agronomic and Horticultural Research Department, Research and Education Center of Agriculture and Natural Resources in Mazandaran, Agricultural Extension and Education Research Organization, Sari, Iran
Received: 2017-08-02
Accepted : 2018-01-24
Published : 2018-01-21
Keywords:
cluster analysis,
correlation,
path analysis,
stepwise regression,
common wheat,
heat stress,
Abstract :
To determine the traits affecting grain yield, 10 bread wheat genotypes including Morvarid and Kohdasht cultivars and Lines of N-87-4, N-87-9, N-86-6, N-86-8, N-80-19, N-86-5, N-85-5 and Line 17 were planted in two separate experiments including environmental conditions without heat stress in 15 December, and heat stress conditions of 10 February in Gonbad Kavous Agricultural Research Station during 2011-2012. Genotypes were compared in a randomized complete block design with three replications andwith combined analysis. Interaction of heat stress and genotypes were significant for grain yield, spike length, number of fertile spike. Genotypes and heat stress effect in all recorded traits were significant. In both conditions, grain yield had a positive and significant correlation with number of fertile spikes. Stepwise regression showed that the number of fertile spikes in normal conditions 99.8% and in heat stress 97.1% of grain yield changes were explained. The path analysis showed that the number of fertile spike had the most direct effect on grain yield in both conditions. The cluster analysis categorized genotypes into two group in normal conditions and three groups in heat stress conditions. Therefore, the number of fertile spikes can be used indirectly in the selection of genotypes with high yield in both heat and normal conditions.
References:
Abedini S, Mohammadi-Nejad Gh, Nakhoda B (2016) Evaluation of agronomic traits and yield potential diversity inbreed wheat inbred lines (Triticum aestivum L.) derived from Roshan × Falat Cultivar. Journal of Crop Breeding 8(20): 1-10. [in Persian with English abstract]
Afiuni D, Mahloji M (2006) Correlation analysis of some agronomic traits in wheat (Triticum aestivum L.) genotypes under salinity stress. Seed and Plant Improvement Journal 22(2): 186-197. [in Persian with English abstract]
Al-Khatib K, Paulsen GM (1990) Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Science 30: 1127–1132.
Aly RM, El-Bana AYA (1994) Grain yield analysis for nine wheat cultivars grown in newly cultivated sandy soil under different fertilization levels. Zagazing Journal of Agriculture Research 21: 67-77.
Arshad U, Zahravi M, Ebadvarze GhR (2012) Identification of sources of heat stress in wheat relatives. Journal of Agricultural Research 4(2): 98-107. [in Persian]
Ayeneh A, van Ginkel M, Reynolds MP, Ammar K (2002) Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research 79: 173-184.
Fagam AS, Bununu AM, Buba UM (2007) Path Coefficient Analysis of the Components of Grain Yield in Wheat (Triticum aestivum L.). International Journal of Natural and Applied Sciences 2: 310-316.
Gohari AM, Sedaghat N, Javan Nikkhah M, Saberi-Riseh R (2007) Mycoflora of Wheat Grains in the Main Production Area in Kerman Province, Iran. International Journal of Agriculture and Biology 9(4): 635-637.
Keim DL, Kronstand WE (1981) Drought responses of winter wheat cultivars grown under field stress conditions. Crop Science 21: 11-14.
Modarresi M, Mohammadi V, Zali A, Mardi M (2010) Response of wheat yield and yield related traits to high temperature. Cereal Research Communications 38: 23–31.
Nahar K, Ahamed KU, Fujita M (2010) Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Notulae Scientia Biologicae 2(3): 51-56.
Nanda Mandal S, Singh Dhanda S, Munjal R, Pramanik Ch (2016) Multivariate analysis for trait alliance of bread wheat yield under terminal heat stress conditions. International Quarterly Journal of Environmental Sciences 10(2): 121-127.
Norkhalaj K, Khodarahmi M, Amini A, Esmailzadeh M, Sadegh Ghol Moghaddam R (2010) Study on Correlation and Causation relations of Morphological traits in synthetic wheat liens. Journal of Agronomy and Plant Breeding 6(3): 7-17. [in Persian]
Oraki A, Siahpoosh MR, Rahnama A, Lakzadeh I (2016) The effects of terminal heat stress on yield, yield components and some morpho-phenological traits of barley genotypes (Hordeum vulgare L.) in Ahvaz weather conditions. Iranian Journal of Filed Crop Science 47(1): 29-40. [in Persian with English abstract]
Porjahromi MA (2007) The response two wheat cultivars to adjusting the size of the source: Interaction of variety and density in stress and normal conditions. Master Thesis. University of Tehran, Faculty of Agriculture: Tehran, Iran. [in Persian with English abstract]
Radmehr M (1997) Effect of heat stress on physiology of growth and development of wheat. Ferdowsi University Publication: Mashhad. [in Persian]
Richards RA (1996) Defining selection criteria improve yield under drought. Plant Growth Regulation 20: 157-166.
Royo C, Nachit MM, Fonze ND, Araus JL, Pfeiffer WH, Slafer GA (2005) Durum wheat breeding: current approaches and future strategies. Food product Publication: Binghamton, USA.
Sial MA, Afzal MA, Khanzada Sh, Naqvi MH, Dahot MU, Nizamani NA (2005) Yield and quality parameters of wheat genotypes as affected by sowing dates and high temperature stress. Pakistan Journal of Botany 37(3): 575-584.
Suleiman AA, Nganya JF, Ashraf MA (2014) Correlation and path analysis of yield and yield components in some cultivars of wheat (Triticum Aestivum L.) in Khartoum state, sudan 3(6): 221-228.
Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environmental and Experimental Botany 61(3): 199-223.
_||_
Abedini S, Mohammadi-Nejad Gh, Nakhoda B (2016) Evaluation of agronomic traits and yield potential diversity inbreed wheat inbred lines (Triticum aestivum L.) derived from Roshan × Falat Cultivar. Journal of Crop Breeding 8(20): 1-10. [in Persian with English abstract]
Afiuni D, Mahloji M (2006) Correlation analysis of some agronomic traits in wheat (Triticum aestivum L.) genotypes under salinity stress. Seed and Plant Improvement Journal 22(2): 186-197. [in Persian with English abstract]
Al-Khatib K, Paulsen GM (1990) Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Science 30: 1127–1132.
Aly RM, El-Bana AYA (1994) Grain yield analysis for nine wheat cultivars grown in newly cultivated sandy soil under different fertilization levels. Zagazing Journal of Agriculture Research 21: 67-77.
Arshad U, Zahravi M, Ebadvarze GhR (2012) Identification of sources of heat stress in wheat relatives. Journal of Agricultural Research 4(2): 98-107. [in Persian]
Ayeneh A, van Ginkel M, Reynolds MP, Ammar K (2002) Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research 79: 173-184.
Fagam AS, Bununu AM, Buba UM (2007) Path Coefficient Analysis of the Components of Grain Yield in Wheat (Triticum aestivum L.). International Journal of Natural and Applied Sciences 2: 310-316.
Gohari AM, Sedaghat N, Javan Nikkhah M, Saberi-Riseh R (2007) Mycoflora of Wheat Grains in the Main Production Area in Kerman Province, Iran. International Journal of Agriculture and Biology 9(4): 635-637.
Keim DL, Kronstand WE (1981) Drought responses of winter wheat cultivars grown under field stress conditions. Crop Science 21: 11-14.
Modarresi M, Mohammadi V, Zali A, Mardi M (2010) Response of wheat yield and yield related traits to high temperature. Cereal Research Communications 38: 23–31.
Nahar K, Ahamed KU, Fujita M (2010) Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Notulae Scientia Biologicae 2(3): 51-56.
Nanda Mandal S, Singh Dhanda S, Munjal R, Pramanik Ch (2016) Multivariate analysis for trait alliance of bread wheat yield under terminal heat stress conditions. International Quarterly Journal of Environmental Sciences 10(2): 121-127.
Norkhalaj K, Khodarahmi M, Amini A, Esmailzadeh M, Sadegh Ghol Moghaddam R (2010) Study on Correlation and Causation relations of Morphological traits in synthetic wheat liens. Journal of Agronomy and Plant Breeding 6(3): 7-17. [in Persian]
Oraki A, Siahpoosh MR, Rahnama A, Lakzadeh I (2016) The effects of terminal heat stress on yield, yield components and some morpho-phenological traits of barley genotypes (Hordeum vulgare L.) in Ahvaz weather conditions. Iranian Journal of Filed Crop Science 47(1): 29-40. [in Persian with English abstract]
Porjahromi MA (2007) The response two wheat cultivars to adjusting the size of the source: Interaction of variety and density in stress and normal conditions. Master Thesis. University of Tehran, Faculty of Agriculture: Tehran, Iran. [in Persian with English abstract]
Radmehr M (1997) Effect of heat stress on physiology of growth and development of wheat. Ferdowsi University Publication: Mashhad. [in Persian]
Richards RA (1996) Defining selection criteria improve yield under drought. Plant Growth Regulation 20: 157-166.
Royo C, Nachit MM, Fonze ND, Araus JL, Pfeiffer WH, Slafer GA (2005) Durum wheat breeding: current approaches and future strategies. Food product Publication: Binghamton, USA.
Sial MA, Afzal MA, Khanzada Sh, Naqvi MH, Dahot MU, Nizamani NA (2005) Yield and quality parameters of wheat genotypes as affected by sowing dates and high temperature stress. Pakistan Journal of Botany 37(3): 575-584.
Suleiman AA, Nganya JF, Ashraf MA (2014) Correlation and path analysis of yield and yield components in some cultivars of wheat (Triticum Aestivum L.) in Khartoum state, sudan 3(6): 221-228.
Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environmental and Experimental Botany 61(3): 199-223.