Protected Protein Supplement Based on Rumen Undegradable Protein to Enhanced Productivity of Etawah Crossbred Dairy Goats
Subject Areas : CamelI.G. Permana 1 , F.R. Pambudi 2 , S.I.Z. Arif 3 , D. Despal 4 , A. Rosmalia 5
1 - Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University
2 - Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
3 - Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
4 - Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
5 - Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
Keywords: dairy goat, Etawah crossbred, heat treatment, protected protein, rumen unde-gradable protein,
Abstract :
High-lactating dairy goats require a substantial amount of protein. Protected protein supplements could provide a significant quantity of rumen undegradable protein (RUP), ensuring an adequate protein supply for high-lactating dairy goats. This study aimed to evaluate the impact of protected protein supplements on the productivity of Etawah crossbred dairy goats. The study involved 16 Etawah crossbred lactating goats with an average milk production of 0.94 ± 0.38 L head-1 day-1 and an average body weight of 46.80 ± 7.50 kg. A randomized block design of four treatments and four replications was used. The treatment ration were: R0= a ration with 0% protected protein supplement content as control, R1= R0 + 5% protected pro-tein supplement, R2= R0 + 10% protected protein supplement, and R3= R0 + 15% protected protein sup-plement. Data was analyzed using ANOVA and continued to the Duncan test. The results showed that the R1, R2, and R3 treatments significantly (P<0.05) influenced the increase in feed intake, milk production, milk component production, milk urea nitrogen, and blood urea nitrogen. However, no significant effect was observed on milk quality, milk density, blood hematology, blood glucose, triglycerides, or economic factors. It can be concluded that adding a 5% protected protein supplement improved the performance of Etawah crossbred dairy goats without compromising milk quality and animal health.
Ababakri R., Dayani O., Khezri A. and Naserian A. (2021). Influ-ence of flaxseed with rumen undegradable protein level on milk yield, milk fatty acids and blood metabolites in transition ewes. J. Anim. Sci. Technol. 63, 475-490.
Aguilar M., Hanigan M.D., Tucker H.A., Jones B.L., Garbade S.K., McGilliard M.L., Stallings C.C., Knowlton K.F. and James R.E. (2012). Cow and herd variation in milk urea nitro-gen concentrations in lactating dairy cattle. J. Dairy Sci. 95, 7261-726.
Al Mazroea A., Alharby M.A., Almughathwai A.A., Al-Remaithi S.M., Saeed R.M., Alharbi A.F. and Saeed H.M. (2018). Comparison between nutritional values in cow’s milk, and goat milk infant formulas. Int. J. Pharm. Res. Allied Sci. 7, 190-194.
Amer H.A., Ahmed A.S., Gohar H.M. and Abdel Mamid M.A. (1989). Effects of steroid anesthesia on some liver function tests in goats. J. Steroid Biochem. 32, 475-476.
Anton A., Kasip L.M., Wirapribadi L., Depamede S.N. and Asih A.R.S. (2016). Perubahan status fisiologis dan bobot badan sapi bali bibit yang diantarpulaukan dari pulau lombok ke ka-limantan barat. J. Ilmu dan Teknologi. Petern. Indonesia. 2, 86-95.
Astuti A., Rochijan R. and Widyobroto B.P. (2020). Effect of dietary rumen undegraded protein (RUP) level on nutrient in-take and digestion of lactating dairy cows. Bull. Anim. Sci. 44, 228-232.
Astuti D.A., Babab A.S. and Wibawanc I.W.T. (2011). Rumen fermentation, blood metabolites, and performance of sheep fed tropical browse plants. Med Pet. 34, 201-206.
Bangnicka E., Jarczak J., Kościuczuk E., Kaba J., Jóźwik A., Czopowicz M, Strzałkowska N., Krzyżewski J. (2014). Active dry yeast culture supplementation effect on the blood bio-chemical indicators of dairy goats. J. Adv. Dairy Res. 2, 1-7.
Biswajit R., Brahma B., Ghosh A., Pankaj P.K. and Mandal G. (2011). Evaluation of milk urea concentration as useful indica-tor for dairy herd management: A review. Asia J. Anim. Vet. Adv. 6, 1-19.
BPS. (2023). Peternakan Dalam Angka 2023 Volume 8. Badan Pusat Statistik, Indonesia.
Broderick G.A. and Clayton M.K. (1997). A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. J. Dairy Sci. 80, 2964-2971.
Broderick G.A. and Reynal S.M. (2009). Effect of source of ru-men-degraded protein on production and ruminal metabolism in lactating dairy cow. J. Dairy Sci. 92, 2822-2834.
Brun-Bellut J., Kelly J.M., Mathison G.W. and Christopherson R.J. (1991). Effect of rumen degradable protein and lactation on nitrogen metabolism in dairy goats. Canadian J. Anim. Sci. 71, 1111-1124.
Carvalho A.W., Natal D.I.G., Silva C.O., Dantas M.I.S., Barros E.G., Ribeiro S.M.R., Sosta N.M.B. and Martino H.S.D. (2013). Heat-treatment reduces anti-nutritional phytochemi-cals and maintains protein quality in genetically improved hulled soybean flour. Food Sci. Technol. Int. 33, 310-315.
Chaplin D.D. (2010). Overview of the immune response. J. Al-lergy Clin. Immunol. 125, 1-41.
Chen F., Chen B., Guan W., Chen J., Lv Y., Qiao H., Wang C. and Zhang Y. (2016). Metabolic transition of milk lactose syn-thesis and up-regulation by AKT1 in sows from late preg-nancy to lactation. Cell Biochem. Biophys. 75, 131-138.
Chesini R.G., Takiya C.S.., Dias M.S.S., Silva T.B.P., Nunes A.T., Grigoletto N.T.S., Silva G.G., Vittorazzi P.C.Jr., Rennó L.N. and Rennó F.P. (2023). Dietary replacement of soybean meal with heat-treated soybean meal or high-protein corn dis-tillers grains on nutrient digestibility and milk composition in mid-lactation cows. J. Dairy Sci. 106, 233-244.
Christian J.A. and Pugh D.G. (2012). Sheep and Goat Medicine. Elsevier Saunders, Missouri, US.
Čobanović K., Krstović S., Štrbac L., Šaran M., Kasalica A. and Popović M. (2019). Relationship between milk urea level and milk parameters in the Saanen dairy goat. Contemp. Agric. 68, 88-91.
Craig A.L., Gordon A.W., Hamill G. and Ferris C.P. (2022). Milk composition and production efficiency within feed-to-yield systems on commercial dairy farms in Northern Ireland. Ani-mals. 12, 1-19.
Cunningham J.G. (2002). Textbook of Veterinary Physiology. Saunders, New York, US.
Davis A.K., Maney D.L. and Maerz J.C. (2008). The use of leuko-cyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 22, 760-772.
Doiron K., Yu P., McKinnon J.J. and Christensen A.A. (2009). Heat-induced protein structure and subfractions in relation to protein degradation kinetics and intestinal availability in dairy cattle. J. Dairy Sci. 92, 3319-3330.
Eckles C.H., Combs W.B. and Macy H. (1980). Milk and Milk Products. Mc Graw Hill Company. New York, US.
Elsaadawy S.A., Wu Z., Wang H., Hanigan M.D. and Bu D. (2022). Supplementing ruminally protected lysine, methionine, or combination improved milk production in transition dairy cows. Front. Vet. Sci. 9, 1-17.
Fachiroh L., Prasetiyono B.W.H.E. and Subrata A. (2012). Kadar protein dan urea darah kambing perah peranakan etawa yang diberi wafer pakan komplit berbasis limbah agroindustri dengan suplementasi protein terproteksi. Anim. Agric. J. 1, 443-451.
Faza A.F., Soejono C.B., Sayuthi S.M. and Santoso S.A. (2017). Profil lemak darah sapi perah laktasi akibat suplementasi bak-ing soda dalam pakan. J. Sain Petern. Indonesia. 12, 353-359.
Feldman B.F., Zink J.G. and Jain N.C. (2002). Schalm’s Veteri-nary Hemetology. Lippincott Williams and Wilkins. Philadel-phia, US.
Fusco V., Chieffi D., Fanelli F., Logrieco A.F., Cho G.S., Kabisch J., Böhnlein C. and Franz C.M.A.P. (2020). Microbial quality and safety of milk and milk products in the 21st century. Compr. Rev. Food Sci. Food Saf. 19, 2013-2049.
Gigon L., Yousefi S., Karaulov A. and Simon H.U. (2021). Mechanisms of toxicity by neutrophil and eosinophil granule proteins. Allergol. Int. 70, 30-38.
Indah A.S., Permana I.G. and Despal D. (2020). Model pendugaan total digestible nutrient (TDN) pada hijauan pakan tropis menggunakan komposisi nutrien. Sains Pet. 18, 38-43.
Jonker J.S., Kohn R.A. and Erdman R.A. (1998). Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. J. Dairy Sci. 81, 2681-2692.
Ju X.H., Xu H.J., Yong Y.H., An L.L., Jiao P.R. and Liao M. (2014). Heat stress upregulation of Toll-like receptors 2/4 and acute inflammatory cytokines in peripheral blood mononuclear cell (PBMC) of Bama miniature pigs: An in vivo and in vitro study. Animals. 8, 1462-1468.
Junior G.S.D., Silveira V.A., Ascari I.J., Pereira R.P.N., Danés M.A.C. and Pereira M.N. (2017). Replacement of raw soybean with roasted soybean increased milk production in Holstein cows. Ciênc. Rural. 47, 1-7.
Karlsson L., Ruiz-Moreno M., Stern M.D. and Martinsson K. (2012). Effect of temperature during moist heat treatment on ruminal degradability and intestinal digestibility of protein and amino acid in hempseed cake. Asian-Australasian J. Anim. Sci. 25, 1559-1567.
Kohn R.A., Dineen M.M. and Sohen-Russek S. (2005). Using blood urea nitrogen to predict nitrogen excretion and effi-ciency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci. 88, 879-889.
Kumar A. and Sharma A. (2016). Nutritional and medicinal supe-riority of goat milk over cow milk in infants. Int. J. Ped. Nurs. 2(1), 47-50.
Larsen M.H., Lapierre L. and Kristensen N.B. (2014). Abomasal pro tein infusion in postpartum transition dairy cows: Effect on performance and mammary metabolism. J. Dairy Sci. 97, 5608-5622
Lee Y.H., Ahmadi F., Lee M., Oh Y.K. and Kwak W.S. (2020). Effect of crude protein content and undegraded intake protein level on productivity, blood metabolites, carcass characteris-tics, and production economics of Hanwoo steers. Asian-Australasian J. Anim. Sci. 33, 1599-1609.
Lemosquet S., Raggio G., Lobley G.E., Rulquin H., Guinard-Flament J. and Lapierre H. (2009). Whole-body glucose me-tabolism and mammary energetic nutrient metabolism in lac-tating dairy cows receiving digestive infusions of casein and propionic acid. J. Dairy Sci. 92, 6068-6082.
Linn J. (2006). Feed efficiency: its economic impact in lactating dairy cow. WCDC Adv. Dairy Technol. 18, 19-28.
Madan J., Sindhu S., Gupta M. and Kumar S. (2016). Hematobio-chemical profile and mineral status in growing beetal goat kids. J. Cell Tissue Res. 16, 5517-5522.
Mader T.L., Davis M.S. and Brown-Brandl T. (2006). Environ-mental factor influencing heat stress in feedlot cattle. J. Anim. Sci. 84, 712-719.
Mahendra D., Setiadi A. and Hartanto R. (2023). Effect of the COVID-19 pandemic on demand of goat's milk in Central Java. AIP. Conf. Sci. 2586, 1-9.
Malech H.L., DeLeo F.R. and Quinn M.T. (2014). The role of neutrophils in the immune system: an overview. Methods Mol. Biol. 1124, 3-10.
Manoukian M., DelCurto T., Kluth J., Carlisle T., Davis N., Nack M., Wyffels S., Scheaffer A. and Emon M.V. (2021). Impacts of rumen degradable or undegradable protein supplementation with or without salt on nutrient digestion, and VFA concentra-tions. Animals. 11, 1-12.
Martins C.M.M.R., Fonseca D.C.M., Alves B.G., Arcari M.A., Ferreira G.C., Welter K.C., Oliveira C.A.F., Rennó F.P. and Santos M.V. (2019). Effect of dietary crude protein degrad-ability and corn processing on lactation performance and milk protein composition and stability. J. Dairy Sci. 102, 4165-4178.
Melendez P., Möller J., Arevalo A. and Pinedo P. (2023). The effect of rumen-protected lysine and methionine on milk yield, milk components, and body weight in grazing Holstein cows during spring calving season in the southern hemisphere. Livest. Sci. 272, 1-11.
Mohammed S.A., Razzaque M.A., Omar A.E., Albert S. and Al-Gallaf W. (2016). Biochemical and hematological profile of different breeds of goat maintained under intensive production system. African J. Biotechnol. 15, 1253-1257.
Montero-Prado P., Ruiz-Morales G.A. and Fossatti-Carrillo A. (2021). Physicochemical characterization and correlation of raw cow’s milk according to classification assigned in Pa-nama. Agron. Mesoamericana. 32, 939-948.
Morar D., Ciulan V., Simiz F., Mot T., Hutu I. and Vaduva C. (2018). Effect of heat stress on haematological parameters in dairy cows. Lucrari Stiintifice Med. Vet. 51, 65-70.
Mudatsir M., Dzarnisa D. and Rachmadi D. (2021). The effect of giving a combination of Tabut and ammoniated citronella waste on the physiological and hematological responses of lac-tating Etawa crossbreed goats. IOP Conf. Ser. Earth Environ. Sci. 667, 1-7.
Mustafa K.N.S. (2021). Effect of formaldehyde-protected diets on milk yield, composition and some blood biochemical parame-ters in Karadi ewes. Iraqi J. Agric. Sci. 52, 1094-1100.
Nakano M., Matoba K. and Togamura Y. (2018). An estimation for total digestible nutrient in fresh herbage from a perennial ryegrass-white clover mixed pasture. Japan Agric. Res. Q. 55, 155-161.
Naveen P., Chouraddi R., Anil A., Anand V.M., Yadav S., Singh A.K., Nair P.M., Gujjalkar P., Jigyasha J. and Durge A. (2022). Different taste enhancing feed additives in livestock feeding- a review. J. Appl. Sci. 12, 322-329.
Nichols K., Kim J.J.M., Carson M., Metcalf J.A., Cant J.P. and Doelman J. (2016). Glucose supplementation stimulates pe-ripheral branched-chain amino acid catabolism in lactating dairy cows during essential amino acid infusions. J. Dairy Sci. 99, 1145-1160.
Novianti J., Purwanto B.P., Astuti D.A. and Atabany A. (2021). Milk production and metabolite profile of Saanen goat fed with Moringa oleifera, Sauropus androgynous L. Merr and Coleus amboinicus Lour leaves. Livest. Res. Rural Dev. 33, 6-11.
NRC (1981). Nutrient Requirements of Sheep. 7th Ed. National Academy Press, Washington, D.C., USA.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th Ed. Na-tional Academy Press, Washington, DC., USA.
Osorio J.S., Lohakare J. and Bionaz M. (2016). Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and post-transcriptional regulation. Physiol. Genomics. 48, 231-256.
Owens F.N., Qi P.A.S. and Sapienza D.A. (2014). Invited Review: Applied protein nutrition of ruminants-Current status and fu-ture directions. Prof. Anim. Sci. 30, 150-179.
Pambudi F.R., Rosmalia A., Permana I.G. and Despal D. (2023). Fermentability and digestibility of dairy cattle ration contain-ing corn-nfc, protected soybean and sulfur supplementation. IOP Conf. Ser. Earth Environ. Sci. 1246, 1-6.
Park D.M., Gu B.H., Park Y.J., Joo S.S., Lee S.S., Kim S.H., Kim E.T., Kim D.H., Lee S.S., Lee S.J., Kim B.W. and Kim M. (2021). Dynamic changes in blood immune cell compotition and function in Holstein and Jersey steers in response to heat stress. Cell Stress Chaperones. 26, 705-720.
Perdana S., Cakra I.G.L.O. and Mahardika I.G. (2020). The effect of concentrate replacement level with gamal leaf (gliricidia sepium) in ransum on rument metabolite products and blood goat profile. Int. J. Life Sci. 4(1), 66-77.
Phesatchaa B., Phesatchab K., Viennaxayc B., Thaoc N.T. and Wanapat M. (2022). Feed intake and nutrient digestibility, ru-men fermentation profiles, milk yield and compositions of lac-tating dairy cows supplemented by flemingia macrophylla pel-let. Trop. Anim. Sci. J. 44, 288-296.
Pramono A., Altiara D.N.P. and Cahyadi M. (2023). The effect of differences in lactation period and milking time on milk pro-duction and quality of Saanen Etawa crossbreed goats (Sa-pera). IOP Conf. Ser. Earth Environ. Sci. 1200, 1-8.
Ratya N., Taufik E. and Arief I.I. (2017). Karakteristik kimia, fisik, dan mikrobiologis susu kambing Peranakan Etawah di Bogor. J. Ilmu Prod. Teknol. Hasil Petern. 5, 1-4.
Rosmalia A., Permana I.G., Despal and Toharmat T. (2024). In sacco and in vitro evaluation of heating and formaldehyde treated protein feed. Am. J. Anim. Vet. Sci. 19, 74-85.
Rosmalia A., Permana I.G., Despal D. and Zahera R. (2021). Es-timation rumen degradable protein of local feeds in dairy cat-tle using in sacco method. IOP Conf. Ser. Earth Environ. Sci. 883, 1-8.
Roy B.B., Brahma S., Ghosh P.K., Pankaj P. and Mandal G. (2011). Evaluation of milk urea concentration as useful indica-tor for dairy herd management: A review. Asian J. Anim. Vet. Adv. 6, 1-19.
Sakha M., Shamesdini M. and Mohamad-Zadeh F. (2008). Blood serum biochemistry values in Raini Goat of Iran. Int. J. Vet. Med. 6, 1-7.
Salo S. (2018). Effects of quality and amounts of dietary protein on dairy cattle reproduction and the environment. J. Dairy Vet. Sci. 5, 1-7.
Sastradipradja D., Sikar S.H.S., Widjayakusuma R., Maad T., Unandar U., Nasution H., Suriawinata R. and Hamzah K. (1989). Penuntun Praktikum Fisiologi Veteriner. IPB Press. Bogor, Indonesia.
Savari M., Khorvash M., Amanlou H., Ghorbani G.R., Ghasemi E. and Mirzaei M. (2018). Effects of rumen-degradable protein: rumen-undegradable protein ratio and corn processing on pro-duction performance, nitrogen efficiency, and feeding behav-ior of Holstein dairy cows. J. Dairy Sci. 101, 1111-1122.
Schwab C.G. and Broderick G.A. (2017). A 100-year review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci. 100, 10094-10112.
Seifdavati J. and Taghizadeh A. (2012). Effects of moist heat treatment on ruminal nutrient degradability of and in vitro in-testinal digestibility of crude protein from some of legume seeds. J. Food Agric. Environ. 10, 390-397.
Shi C. and Pamer E.G. (2011). Monocyte recruitment during in-fection and inflammation. Nat. Rev Immunol. 11, 762-774.
Silanikove N. and Koluman N. (2015). Impact of climate change on the dairy industry in temperate zones: Predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Rumin. Res. 123, 27-34.
Souza V.C., Aguilar M., Amburgh M.V., Nayanajalie W.A.D. and Haningan M.D. (2021). Milk urea nitrogen variation expalined by differences in urea transport into the gastrointestinal tract in lactating dairy cows. J. Dairy Sci. 104, 6715-6726.
SPSS Inc. (2011). Statistical Package for Social Sciences Study. SPSS for Windows, Version 20. Chicago SPSS Inc., USA.
Sudrajat A., Buisatria I.G.S., Bintara S., Rahayu E.R.V., Hidayat N. and Shristi R.F. (2021). Produktivitas induk kambing Peranakan Etawah (PE) di Taman Ternak Kaligesing. J. Ilmu Ternak. 21, 27-32.
Suryani N.N., Suarna I.W., Mahardika I.G. and Sarini N.P. (2020). Rumen fermentation and microbial protein synthesis of Bali cattle heifers (Bos sondaicus) fed ration containing dif-ferent energy protein level. J. Sain Petern. Indonesia. 15, 187-194.
TAS (Thai Agricultural Standard). (2008). Raw Goat Milk. In the Royal Gazette, Bangkok, Thailand.
Tetrick M.A. and Odle J. (2020). What constitutes a gluconeo-genic precursor? J. Nut. 150, 2239-2241.
Thapa P., Pandey T., Acharya R. and Dhital B. (2019). Effect of by-pass protein supplements on milk production of dairy cat-tle. J. Agric. Nat. Res. 2, 171-179.
Zain W.N.H. (2013). Kualitas susu kambing segar di peternakan umban sari alam raya kota Pekanbaru. J. Pet. 10, 24-30.
Zhang H., Wang Z., Liu G., He J. and Su C.H. (2011). Effect of dietary fat supplementation on milk components and blood pa-rameters of early-lactating cows under heat stress. Slovak J. Anim. Sci. 44, 52-58.
Zhang N., Zhang Z.M. and Wang X.F. (2021). The roles of baso-phils in mediating the immune responses. European J. In-flamm. 19, 1-7.