Adaptive Interaction of Artificial Intelligence and Architecture: A Focus on Historical Developments from 1920 to 2023
Subject Areas : Urban FuturologySeyed Ali akbar Sadri 1 , Mohammad Hadi Kaboli 2 , Mitra Mirzarezaee 3 , Mohamad Reza Soleymani 4
1 - Department of Architecture, Faculty of Art and Architecture, West Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Architecture, Faculty of Art and Architecture, Damavand branch, Islamic Azad University, Damavand, Iran.
3 - Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
4 - Department of Architecture, Faculty of Art and Architecture, West Tehran Branch, Islamic Azad University, Tehran, Iran.
Keywords: Architecture, Artificial Intelligence, Computer-Aided Design, Neural¬ Networks, Image Generation Models.,
Abstract :
The process of architectural thinking, traditions, methods, and the vast body of architectural knowledge, similar to other artistic fields, currently stands at a critical juncture in its history. The emergence of Artificial Intelligence (AI) in architecture over the past seventy years signifies a paradigm shift, resulting in significant transformations within the field. Despite addressing factors that have hindered the acceleration of such remarkable change, the present study evaluates the progression and interaction of architectural developments with AI. One approach to investigating AI's impact on the world of architecture involves exploring the cultural, technical, and historical realms. The primary objective of this study was to demonstrate the adaptation of new AI-related findings within architecture while considering their historical developments from 1920 to 2023. The study employed a qualitative method, conducting a historical research based on a comparative analysis of architectural and AI achievements in ten-year periods. The findings suggest that the relationship between architecture and technology has grown substantially in parallel with the evolution of AI. The latest advancements in AI have not only influenced the design process but have also significantly affected the broader field of practice and thought. This adaptation can be categorized into four periods: architecture aided by standardization, architecture utilizing computers, architecture with the assistance of parameters, and architecture through the application of AI.
منابع
باباخانی، رضا و شاهچراغی، آزاده و ذبیحی، حسین. (1402). فرایند یادگیری ماشین در اعمال روابط فضایی پلان های مسکونی مبتنی بر نمونه و ماتریس همجواری. نشريه علمي مرمت و معماري ايران، ۱۳ (۳۴). http://mmi.aui.ac.ir/article-1-1297-fa.html.
تدین، کیا و مهدوی نژاد، محمدجواد و شاهچراغی، آزاده. (1400). کاربرد الگوریتمهای ریاضی پیشرفته در یکپارچهسازی فرآیند طراحی معماری. معماری و شهرسازی پایدار، 9(1)، 1-12. https://doi.org/10.22061/jsaud.2020.6603.1686
چوپان، زهره وکامران کسمایی، حدیثه. (1402). بررسی تاثیرات طراحی معماری در بهینهسازی مصرف انرژی در شهر آمل. پژوهش های نوین علوم جغرافیایی، معماری و شهرسازی، (43)، 19-25. http://noo.rs/kWbvv.
خبازی، زوبین (1395). پارادایم معماری الگوریتمیک، مشهد: کتابکده کسری.
خبازی، زوبین (1398). فرآیند های طراحی دیجیتال، مشهد: کتابکده کسری.
رهبر، مرتضی، مهدوی نژاد، محمدجواد، بمانیان، محمدرضا، و دوائی مرکزی، امیرحسین. (1399). الگوریتم سی گَن در تولید نقشه حرارتی جانمایی فضایی در طراحی معماری. معماری و شهرسازی آرمان شهر، 13(32 )، 131-142. https://sid.ir/paper/399333/fa.
روحی، پویان (1398). استودیوی بی کاغذ و دانشگاه کلمبیا در دوران مدیریت برنارد چومی، مشهد: کتابکده کسری.
صادقیان، مریم، و حسینی، اکرم. (1400). بررسی کارایی روشهای بهینه سازی تکاملی در دستیابی به اهداف معماری و ساخت. هویت شهر، 15(45)، 17-34.. https://sid.ir/paper/396655/fa
صدری، سید علی اکبر و کابلی، محمد هادی و میرزا رضایی، میترا و سلیمانی، محمدرضا. (1402). فرایند تحلیل روش ها و رویکرد های تولید چیدمانهای خودکار فضایی. معمار شهر، 8 (90-117). https://sanad.iau.ir/Journal/memarshahr/Article/1041460.
References:
1956 Nobel Prize in Physics. (2023). Nokia Bell Labs. https://www.bell-labs.com/about/awards/1956-nobel-prize-physics/
AA School of Architecture. (2021). David Rutten - Computing Architectural Concepts: Grasshopper Stories [Video]. YouTube. https://www.youtube.com/watch?v=KaJfUPk1qNs
Alexanders, C. (1965). A city is not a tree. Architectural Forum, 122(1), 58–62. https://www.academia.edu/43003715/Christopher_Alexanders_A_CITY_IS_NOT_A_TREE_AF_Vol_122_1_2_April_May
Babakhani, R., Shahcheraghi, A., & Zabihi, H. (2023). The machine learning process in applying spatial relations of residential plans based on samples and adjacency matrix. Maremat & Memari-e Iran, 13(34), 30–52. http://mmi.aui.ac.ir/article-1-1297-fa.html [In Persian].
Boden, M. A. (2016). AI: Its nature and future. Oxford University Press,p.10, p.17. https://cds.cern.ch/record/2295640
Bottazzi, R. (2018). Digital Architecture Beyond Computers: Fragments of a Cultural History of Computational Design. Bloomsbury Publishing. p.50. https://www.amazon.com/Digital-Architecture-Beyond-Computers-Computational/dp/1474258131
Campbell, M., Hoane, A. J., & Hsu, F. (2002). Deep Blue. Artificial Intelligence, 134(1–2), 57–83. https://doi.org/10.1016/s0004-3702(01)00129-1
Chaillou, S. (2020). AI + Architecture | Towards a new approach. Harvard. https://www.academia.edu/39599650/AI_Architecture_Towards_a_New_Approach
Chaillou, S. (2021). Artificial Intelligence and Architecture: From Research to Practice. Birkhaüser,p.42. https://birkhauser.com/books/9783035624045
Choopan, Z., & Kamran Kasmaee, H. (2023). Investigating the effects of architectural design on optimizing energy consumption in Amol City. New Researches of Geographical Sciences, Architecture and Urban Planning, 5(43), 19–25 http://noo.rs/kWbvv [In Persian].
Cohen, M. M., & Prosina, A. (2020). Buckminster Fuller’s Dymaxion House as a paradigm for a space habitat. ASCEND 2020. https://doi.org/10.2514/6.2020-4048
Crevier, D. (1993). AI: The Tumultuous History Of The Search For Artificial Intelligence,p.30. https://www.amazon.com/Ai-Tumultuous-History-Artificial-Intelligence/dp/0465029973
Davis, D. (2022, August 31). A history of parametric. Daniel Davis. https://www.danieldavis.com/a-history-of-parametric/
DeepDream - a code example for visualizing Neural Networks. (2015, July 1). Research Blog. https://web.archive.org/web/20150708233542/http://googleresearch.blogspot.co.uk/2015/07/deepdream-code-example-for-visualizing.html
Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Li, F. (2009). ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/cvpr.2009.5206848
Eastman, C. M., Teicholz, P., Sacks, R., & Liston, K. (2008). BIM Handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors. http://ci.nii.ac.jp/ncid/BA87578739
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1406.2661
Grason, J. (1971). An approach to computerized space planning using graph theory. DAC ’71: Proceedings of the 8th Design Automation WorkshopJune. https://doi.org/10.1145/800158.805070
Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1512.03385
Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2006.11239
Isola, P., Zhu, J., Zhou, T., & Efros, A. A. (2016). Image-to-Image Translation with Conditional Adversarial Networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1611.07004
James, L., James, L., Stuart, S., Roger, N., & Christopher, L. H. (1973). Artificial intelligence: A general survey. Science Research Council. https://rodsmith.nz/wp-content/uploads/Lighthill_1973_Report.pdf
Karras, T., Laine, S., & Aila, T. (2018). A Style-Based generator architecture for generative adversarial networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1812.04948
Kelleher, J. D. (2019). Deep Learning. MIT Press. https://mitpress.mit.edu/9780262537551/deep-learning/
Khabazi, Z. (2016). Algorithmic Architecture Paradigm. Kasra publishing. [In Persian].
Khabazi, Z. (2018). Algorithmic Architecture Paradigm. Kasra publishing. [In Persian].
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems, 25, 1097–1105. http://books.nips.cc/papers/files/nips25/NIPS2012_0534.pdf
Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., & Wei, X. (2022). YOLOV6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2209.02976
Livingston, M. (2002, June 17). Watergate: The name that branded more than a buildin. Bizjournals.Retrieved April 2, 2023, from https://www.bizjournals.com/washington/stories/2002/06/17/focus11.html
Luo, S., & Hu, W. (2021). Diffusion probabilistic models for 3D point cloud generation. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2103.01458
Marsh, A. (2023, March 3). In 1961, the First Robot Arm Punched In. IEEE Spectrum. https://spectrum.ieee.org/unimation-robot
Matuszek, C., Cabral, J., Witbrock, M., & DeOliveira, J. (2006). An introduction to the syntax and content of CYC. National Conference on Artificial Intelligence, 44–49. https://doi.org/10.13016/m2j09w76t
McCarthy, J. J. (1984). Some Expert Systems Need Common Sense. Annals of the New York Academy of Sciences, 426(1 Computer Cult), 129–137. https://doi.org/10.1111/j.1749-6632.1984.tb16516.x
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine, 27(4), 12. https://doi.org/10.1609/aimag.v27i4.1904
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/bf02478259
Minsky, M., & Papert, S. A. (2017). Perceptrons. In The MIT Press eBooks. https://doi.org/10.7551/mitpress/11301.001.0001
Mitchell, M. (2020). Artificial intelligence: A Guide for Thinking Humans. Pelican Books.
Moor, J. H. (2006). The Dartmouth College Artificial Intelligence Conference: The Next Fifty Years. Ai Magazine, 27(4), 87–91. https://doi.org/10.1609/aimag.v27i4.1911
Negroponte, N. (1969). Toward a theory of architecture machines. Journal of Architectural Education of the Association of Collegiate Schools of Architecture, 23(2), 9. https://doi.org/10.2307/1423828
Negroponte, N. (1970). The architecture machine. In The MIT Press eBooks. https://doi.org/10.7551/mitpress/8269.001.0001
Newton, D. W. (2019). Generative deep learning in architectural design. Technology, Architecture + Design, 3(2), 176–189. https://doi.org/10.1080/24751448.2019.1640536
Rahbar, M., Bemanian, M., & Davaei Markazi, A. (2020). Training CGAN Algorithm for Generating Architectural Layout Heat Map. Armanshahr Architecture & Urban Development Journal, 13(32), 131–142. https://doi.org/10.22034/aaud.2020.154406.1717 [In Persian].
Reis, D. J., Kupec, J., Hong, J., & Daoudi, A. (2023). Real-Time Flying Object Detection with YOLOv8. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2305.09972
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-NET: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in Computer Science (pp. 234–241). https://doi.org/10.1007/978-3-319-24574-4_28
Roohi, P. (2019). Paperless Studio and Columbia University under the management of Bernard Shumi. kasrapublishing.
Sadeghian, M., & Hosseini, A. (2021). Inves tigating the efficiency of evolutionary optimization methods in achieving architectural and cons truction objectives. Hoviat Shahr, 15(45), 17–34. https://doi.org/10.30495/hoviatshahr.2021.15714 [In Persian].
Sadri, A., Kaboli, M. H., Mirzarezaee, M., & Soleimani, M. (2023). Analyzing methods and approaches to produce automatic automatic space layouts. Memarshahr, 1(1), 90–117.. https://sanad.iau.ir/fa/Article/1041419 [In Persian].
Seelow, A. M. (2018). The construction kit and the Assembly Line—Walter Gropius’ concepts for rationalizing architecture. Arts, 7(4), 95. https://doi.org/10.3390/arts7040095
Sohl-Dickstein, J. (2015, March 12). Deep Unsupervised Learning using Nonequilibrium Thermodynamics. arXiv.org. https://arxiv.org/abs/1503.03585
Stiny, G., & Mitchell, W. J. (1978). The Palladian grammar. Environment and Planning B: Planning and Design, 5(1), 5–18. https://doi.org/10.1068/b050005
Sutherland, I. E. (1964). SketchPad a Man-Machine graphical communication system. SIMULATION, 2(5), R-20. https://doi.org/10.1177/003754976400200514
Tadayon, K., Mahdavinejad, M., & Shahcheraghi, A. (2021). Advanced mathematical algorithms to outline integrated architectural design process. Sustainable Architecture and Urban Design, 9(1), 1–12. https://doi.org/10.22061/jsaud.2020.6603.1686 [In Persian].
Tevet, G., Raab, S., Gordon, B. A., Shafir, Y., Bermano, A. H., & Cohen–Or, D. (2022). Human Motion Diffusion model. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2209.14916
Turing, A. M. (2007). Computing Machinery and Intelligence. In Springer eBooks (pp. 23–65). https://doi.org/10.1007/978-1-4020-6710-5_3
Wang, C., Bochkovskiy, A., & Liao, H. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2207.02696
Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36–45. https://doi.org/10.1145/365153.365168
Zeng, X., Vahdat, A., Williams, F. H., Gojčič, Ž., Litany, O., Fidler, S., & Kreis, K. (2022). LION: Latent Point diffusion models for 3D shape Generation. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2210.06978
Zhu, J., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1703.10593