The relationship between intestinal microbiota composition and the incidence of insulin resistance, a mechanistic review
Subject Areas :
Behina Foroozanmehr
1
,
Mohammad Amin Hemmati
2
,
Majid Eslami
3
,
Habib Yaribeygi
4
1 - Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
2 - Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
3 - Molecular Medicine Research Center ; Hormozgan University of Medical Science
4 - Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
Keywords: Diabetes mellitus, Insulin resistance, Intestinal microbiota, Inflammation, Fatty acid oxidation,
Abstract :
Diabetes is the most common metabolic disease in humans. This chronic disease is directly related to many cases of death or disability and reduced quality of life in humans, despite the efforts made, its prevalence continues to increase worldwide. Studies show that diabetes is one of the main risk factors for the occurrence of cardiovascular diseases, and increasing its prevalence directly increases the probability of these diseases. Therefore, extensive research has been done on the causes of this disease worldwide. Along with factors such as obesity and physical inactivity, studies have shown that the composition of the gut microbiome may contribute to the production of inflammatory or anti-inflammatory factors that can help regulate insulin action and blood sugar levels. As a result, changes in the composition of the gut microbiome can directly lead to changes in insulin signaling and blood sugar levels and lead to diabetes. The intestinal microbiota is a complex combination of microorganisms living in the human intestine that perform many physiological activities. However, the evidence shows that in diabetic patients, the composition of the intestinal microbiome may be associated with changes that can help the metabolic balance of the body and create insulin resistance, so a change in the composition of this natural flora can cause a shift in metabolism and the occurrence of diabetes. However, the mediating mechanisms have not been well identified yet. Therefore, in the present review, some evidences related to the role of intestinal microbiota in the occurrence of diabetes have been presented and mediating mechanisms have been introduced. The present article shows that any factor that leads to a change in the composition of the intestinal microbiota can be the cause of diabetes among the various pathways introduced.
AL-GOBLAN, A. S., AL-ALFI, M. A. & KHAN, M. Z. 2014. Mechanism linking diabetes mellitus and obesity. Diabetes, metabolic syndrome and obesity: targets and therapy, 587-591.
AL-JAMEEL, S. S. 2021. Association of diabetes and microbiota: An update. Saudi J Biol Sci, 28, 4446-4454.
ALLIN, K. H., NIELSEN, T. & PEDERSEN, O. 2015. Mechanisms in endocrinology: Gut microbiota in patients with type 2 diabetes mellitus. Eur J Endocrinol, 172, R167-77.
BAIG, S., PARVARESH RIZI, E., CHIA, C., SHABEER, M., AUNG, N., LOH, T. P., MAGKOS, F., VIDAL-PUIG, A., SEET, R. C. S., KHOO, C. M. & TOH, S. A. 2019. Genes Involved in Oxidative Stress Pathways Are Differentially Expressed in Circulating Mononuclear Cells Derived From Obese Insulin-Resistant and Lean Insulin-Sensitive Individuals Following a Single Mixed-Meal Challenge. Front Endocrinol (Lausanne), 10, 256.
BANDAY, M. Z., SAMEER, A. S. & NISSAR, S. 2020. Pathophysiology of diabetes: An overview. Avicenna journal of medicine, 10, 174-188.
BEZIRTZOGLOU, E. 1997. The intestinal microflora during the first weeks of life. Anaerobe, 3, 173-177.
CANI, P. D., AMAR, J., IGLESIAS, M. A., POGGI, M., KNAUF, C., BASTELICA, D., NEYRINCK, A. M., FAVA, F., TUOHY, K. M., CHABO, C., WAGET, A., DELMEE, E., COUSIN, B., SULPICE, T., CHAMONTIN, B., FERRIERES, J., TANTI, J. F., GIBSON, G. R., CASTEILLA, L., DELZENNE, N. M., ALESSI, M. C. & BURCELIN, R. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56, 1761-72.
CANI, P. D., BIBILONI, R., KNAUF, C., WAGET, A., NEYRINCK, A. M., DELZENNE, N. M. & BURCELIN, R. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes, 57, 1470-1481.
CARICILLI, A. M., PICARDI, P. K., DE ABREU, L. L., UENO, M., PRADA, P. O., ROPELLE, E. R., HIRABARA, S. M., CASTOLDI, Â., VIEIRA, P. & CAMARA, N. O. 2011. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS biology, 9, e1001212.
CARICILLI, A. M. & SAAD, M. J. 2013. The role of gut microbiota on insulin resistance. Nutrients, 5, 829-851.
CERF-BENSUSSAN, N. & GABORIAU-ROUTHIAU, V. 2010. The immune system and the gut microbiota: friends or foes? Nature Reviews Immunology, 10, 735-744.
CHANG, Y. C., CHING, Y. H., CHIU, C. C., LIU, J. Y., HUNG, S. W., HUANG, W. C., HUANG, Y. T. & CHUANG, H. L. 2017. TLR2 and interleukin-10 are involved in Bacteroides fragilis-mediated prevention of DSS-induced colitis in gnotobiotic mice. PLoS One, 12, e0180025.
CHELAKKOT, C., CHOI, Y., KIM, D. K., PARK, H. T., GHIM, J., KWON, Y., JEON, J., KIM, M. S., JEE, Y. K., GHO, Y. S., PARK, H. S., KIM, Y. K. & RYU, S. H. 2018. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med, 50, e450.
CHEN, P., ZHANG, Q., DANG, H., LIU, X., TIAN, F., ZHAO, J., CHEN, Y., ZHANG, H. & CHEN, W. 2014. Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Nutrition, 30, 1061-8.
CLAESSON, M. J., CUSACK, S., O'SULLIVAN, O., GREENE-DINIZ, R., DE WEERD, H., FLANNERY, E., MARCHESI, J. R., FALUSH, D., DINAN, T. & FITZGERALD, G. 2011. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences, 108, 4586-4591.
CLEMENTE, J. C., URSELL, L. K., PARFREY, L. W. & KNIGHT, R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell, 148, 1258-1270.
COLE, J. B. & FLOREZ, J. C. 2020. Genetics of diabetes mellitus and diabetes complications. Nature reviews nephrology, 16, 377-390.
COSTELLO, E. K., LAUBER, C. L., HAMADY, M., FIERER, N., GORDON, J. I. & KNIGHT, R. 2009. Bacterial community variation in human body habitats across space and time. science, 326, 1694-1697.
DANG, F., JIANG, Y., PAN, R., ZHOU, Y., WU, S., WANG, R., ZHUANG, K., ZHANG, W., LI, T. & MAN, C. 2018. Administration of Lactobacillus paracasei ameliorates type 2 diabetes in mice. Food Funct, 9, 3630-3639.
DEKKER, M. J., SU, Q., BAKER, C., RUTLEDGE, A. C. & ADELI, K. 2010. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab, 299, E685-94.
DOMINGUEZ-BELLO, M. G., COSTELLO, E. K., CONTRERAS, M., MAGRIS, M., HIDALGO, G., FIERER, N. & KNIGHT, R. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences, 107, 11971-11975.
ELINAV, E., STROWIG, T., KAU, A. L., HENAO-MEJIA, J., THAISS, C. A., BOOTH, C. J., PEAPER, D. R., BERTIN, J., EISENBARTH, S. C. & GORDON, J. I. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell, 145, 745-757.
EVERARD, A., BELZER, C., GEURTS, L., OUWERKERK, J. P., DRUART, C., BINDELS, L. B., GUIOT, Y., DERRIEN, M., MUCCIOLI, G. G., DELZENNE, N. M., DE VOS, W. M. & CANI, P. D. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A, 110, 9066-71.
GALICIA-GARCIA, U., BENITO-VICENTE, A., JEBARI, S., LARREA-SEBAL, A., SIDDIQI, H., URIBE, K. B., OSTOLAZA, H. & MARTíN, C. 2020. Pathophysiology of type 2 diabetes mellitus. International journal of molecular sciences, 21, 6275.
GARRETT, W. S., GORDON, J. I. & GLIMCHER, L. H. 2010. Homeostasis and inflammation in the intestine. Cell, 140, 859-870.
GENUTH, S. M., PALMER, J. P. & NATHAN, D. M. 2021. Classification and diagnosis of diabetes.
GLUVIC, Z., ZARIC, B., RESANOVIC, I., OBRADOVIC, M., MITROVIC, A., RADAK, D. & R ISENOVIC, E. 2017. Link between metabolic syndrome and insulin resistance. Current vascular pharmacology, 15, 30-39.
GOJDA, J. & CAHOVA, M. 2021. Gut microbiota as the link between elevated BCAA serum levels and insulin resistance. Biomolecules, 11, 1414.
GOMAA, E. Z. 2020. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek, 113, 2019-2040.
GREGORY, G. A., ROBINSON, T. I., LINKLATER, S. E., WANG, F., COLAGIURI, S., DE BEAUFORT, C., DONAGHUE, K. C., HARDING, J. L., WANDER, P. L. & ZHANG, X. 2022. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. The lancet Diabetes & endocrinology, 10, 741-760.
GURUNG, M., LI, Z., YOU, H., RODRIGUES, R., JUMP, D. B., MORGUN, A. & SHULZHENKO, N. 2020. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 51, 102590.
HALL, A. B., YASSOUR, M., SAUK, J., GARNER, A., JIANG, X., ARTHUR, T., LAGOUDAS, G. K., VATANEN, T., FORNELOS, N., WILSON, R., BERTHA, M., COHEN, M., GARBER, J., KHALILI, H., GEVERS, D., ANANTHAKRISHNAN, A. N., KUGATHASAN, S., LANDER, E. S., BLAINEY, P., VLAMAKIS, H., XAVIER, R. J. & HUTTENHOWER, C. 2017. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med, 9, 103.
HE, F.-F. & LI, Y.-M. 2020. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review. Journal of ovarian research, 13, 1-13.
HILLMAN, E. T., LU, H., YAO, T. & NAKATSU, C. H. 2017. Microbial ecology along the gastrointestinal tract. Microbes and environments, 32, 300-313.
HOFFMANN, T. W., PHAM, H. P., BRIDONNEAU, C., AUBRY, C., LAMAS, B., MARTIN-GALLAUSIAUX, C., MOROLDO, M., RAINTEAU, D., LAPAQUE, N., SIX, A., RICHARD, M. L., FARGIER, E., LE GUERN, M. E., LANGELLA, P. & SOKOL, H. 2016. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. Isme j, 10, 460-77.
HOU, K., WU, Z.-X., CHEN, X.-Y., WANG, J.-Q., ZHANG, D., XIAO, C., ZHU, D., KOYA, J. B., WEI, L. & LI, J. 2022. Microbiota in health and diseases. Signal transduction and targeted therapy, 7, 135.
HOUMARD, J. A. 2008. Intramuscular lipid oxidation and obesity. Am J Physiol Regul Integr Comp Physiol, 294, R1111-6.
INAN, M. S., RASOULPOUR, R. J., YIN, L., HUBBARD, A. K., ROSENBERG, D. W. & GIARDINA, C. 2000. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology, 118, 724-34.
KANG, J. H., YUN, S. I., PARK, M. H., PARK, J. H., JEONG, S. Y. & PARK, H. O. 2013. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One, 8, e54617.
KARPE, F., DICKMANN, J. R. & FRAYN, K. N. 2011. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes, 60, 2441-2449.
KEENEY, K. M., YURIST-DOUTSCH, S., ARRIETA, M.-C. & FINLAY, B. B. 2014. Effects of antibiotics on human microbiota and subsequent disease. Annual review of microbiology, 68, 217-235.
KHAMSEH, M. E., SEPANLOU, S. G., HASHEMI-MADANI, N., JOUKAR, F., MEHRPARVAR, A. H., FARAMARZI, E., OKATI-ALIABAD, H., RAHIMI, Z., REZAIANZADEH, A. & HOMAYOUNFAR, R. 2021. Nationwide prevalence of diabetes and prediabetes and associated risk factors among Iranian adults: analysis of data from PERSIAN cohort study. Diabetes Therapy, 12, 2921-2938.
KIM, S., COVINGTON, A. & PAMER, E. G. 2017. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunological reviews, 279, 90-105.
KIM, S. H., HUH, C. S., CHOI, I. D., JEONG, J. W., KU, H. K., RA, J. H., KIM, T. Y., KIM, G. B., SIM, J. H. & AHN, Y. T. 2014. The anti-diabetic activity of Bifidobacterium lactis HY8101 in vitro and in vivo. J Appl Microbiol, 117, 834-45.
KINOSHITA, M., SUZUKI, Y. & SAITO, Y. 2002. Butyrate reduces colonic paracellular permeability by enhancing PPARgamma activation. Biochem Biophys Res Commun, 293, 827-31.
KOENIG, J. E., SPOR, A., SCALFONE, N., FRICKER, A. D., STOMBAUGH, J., KNIGHT, R., ANGENENT, L. T. & LEY, R. E. 2011. Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences, 108, 4578-4585.
LANGE, K., BUERGER, M., STALLMACH, A. & BRUNS, T. 2016. Effects of antibiotics on gut microbiota. Digestive Diseases, 34, 260-268.
LEEMING, E. R., JOHNSON, A. J., SPECTOR, T. D. & LE ROY, C. I. 2019. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients, 11, 2862.
LEY, R. E., BäCKHED, F., TURNBAUGH, P., LOZUPONE, C. A., KNIGHT, R. D. & GORDON, J. I. 2005. Obesity alters gut microbial ecology. Proceedings of the national academy of sciences, 102, 11070-11075.
LI, X., WANG, E., YIN, B., FANG, D., CHEN, P., WANG, G., ZHAO, J., ZHANG, H. & CHEN, W. 2017. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes, 8, 421-432.
LI, X., WANG, N., YIN, B., FANG, D., JIANG, T., FANG, S., ZHAO, J., ZHANG, H., WANG, G. & CHEN, W. 2016. Effects of Lactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice. J Appl Microbiol, 121, 1727-1736.
LIU, W. C., YANG, M. C., WU, Y. Y., CHEN, P. H., HSU, C. M. & CHEN, L. W. 2018. Lactobacillus plantarum reverse diabetes-induced Fmo3 and ICAM expression in mice through enteric dysbiosis-related c-Jun NH2-terminal kinase pathways. PLoS One, 13, e0196511.
LOVIC, D., PIPERIDOU, A., ZOGRAFOU, I., GRASSOS, H., PITTARAS, A. & MANOLIS, A. 2020. The growing epidemic of diabetes mellitus. Current vascular pharmacology, 18, 104-109.
MARUHASHI, T. & HIGASHI, Y. 2021. Pathophysiological association between diabetes mellitus and endothelial dysfunction. Antioxidants, 10, 1306.
OHIAGU, F. O., CHIKEZIE, P. C. & CHIKEZIE, C. M. 2021. Pathophysiology of diabetes mellitus complications: Metabolic events and control. Biomedical Research and Therapy, 8, 4243-4257.
PLOVIER, H., EVERARD, A., DRUART, C., DEPOMMIER, C., VAN HUL, M., GEURTS, L., CHILLOUX, J., OTTMAN, N., DUPARC, T., LICHTENSTEIN, L., MYRIDAKIS, A., DELZENNE, N. M., KLIEVINK, J., BHATTACHARJEE, A., VAN DER ARK, K. C. H., AALVINK, S., MARTINEZ, L. O., DUMAS, M.-E., MAITER, D., LOUMAYE, A., HERMANS, M. P., THISSEN, J.-P., BELZER, C., DE VOS, W. M. & CANI, P. D. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 23, 107-113.
QIN, J., LI, Y., CAI, Z., LI, S., ZHU, J., ZHANG, F., LIANG, S., ZHANG, W., GUAN, Y. & SHEN, D. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55-60.
REWERS, M. & LUDVIGSSON, J. 2016. Environmental risk factors for type 1 diabetes. The Lancet, 387, 2340-2348.
ROWLAND, I., GIBSON, G., HEINKEN, A., SCOTT, K., SWANN, J., THIELE, I. & TUOHY, K. 2018. Gut microbiota functions: metabolism of nutrients and other food components. European journal of nutrition, 57, 1-24.
SALTIEL, A. R. 2021. Insulin signaling in health and disease. The Journal of clinical investigation, 131.
SCHEITHAUER, T. P. M., RAMPANELLI, E., NIEUWDORP, M., VALLANCE, B. A., VERCHERE, C. B., VAN RAALTE, D. H. & HERREMA, H. 2020. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front Immunol, 11, 571731.
SHEN, Z., ZHU, C., QUAN, Y., YANG, J., YUAN, W., YANG, Z., WU, S., LUO, W., TAN, B. & WANG, X. 2018. Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses. J Gastroenterol Hepatol, 33, 1751-1760.
SHENDURE, J. & JI, H. 2008. Next-generation DNA sequencing. Nature biotechnology, 26, 1135-1145.
SINGH, R. P., HALAKA, D. A., HAYOUKA, Z. & TIROSH, O. 2020. High-fat diet induced alteration of mice microbiota and the functional ability to utilize fructooligosaccharide for ethanol production. Frontiers in Cellular and Infection Microbiology, 10, 376.
SMOKOVSKI, I. & SMOKOVSKI, I. 2021. Burden of diabetes prevalence. Managing Diabetes in Low Income Countries: Providing Sustainable Diabetes Care with Limited Resources, 1-12.
SUN, H., SAEEDI, P., KARURANGA, S., PINKEPANK, M., OGURTSOVA, K., DUNCAN, B. B., STEIN, C., BASIT, A., CHAN, J. C. & MBANYA, J. C. 2022. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice, 183, 109119.
SUN, K. Y., XU, D. H., XIE, C., PLUMMER, S., TANG, J., YANG, X. F. & JI, X. H. 2017. Lactobacillus paracasei modulates LPS-induced inflammatory cytokine release by monocyte-macrophages via the up-regulation of negative regulators of NF-kappaB signaling in a TLR2-dependent manner. Cytokine, 92, 1-11.
TAKEUCHI, T., KUBOTA, T., NAKANISHI, Y., TSUGAWA, H., SUDA, W., KWON, A. T.-J., YAZAKI, J., IKEDA, K., NEMOTO, S. & MOCHIZUKI, Y. 2023a. Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature, 621, 389-395.
TAKEUCHI, T., KUBOTA, T., NAKANISHI, Y., TSUGAWA, H., SUDA, W., KWON, A. T., YAZAKI, J., IKEDA, K., NEMOTO, S., MOCHIZUKI, Y., KITAMI, T., YUGI, K., MIZUNO, Y., YAMAMICHI, N., YAMAZAKI, T., TAKAMOTO, I., KUBOTA, N., KADOWAKI, T., ARNER, E., CARNINCI, P., OHARA, O., ARITA, M., HATTORI, M., KOYASU, S. & OHNO, H. 2023b. Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature, 621, 389-395.
TANNOCK, G. W. 2023. Understanding the gut microbiota by considering human evolution: a story of fire, cereals, cooking, molecular ingenuity, and functional cooperation. Microbiology and Molecular Biology Reviews, e00127-22.
TREMAROLI, V. & BäCKHED, F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature, 489, 242-249.
TURNBAUGH, P. J., HAMADY, M., YATSUNENKO, T., CANTAREL, B. L., DUNCAN, A., LEY, R. E., SOGIN, M. L., JONES, W. J., ROE, B. A. & AFFOURTIT, J. P. 2009a. A core gut microbiome in obese and lean twins. nature, 457, 480-484.
TURNBAUGH, P. J., LEY, R. E., MAHOWALD, M. A., MAGRINI, V., MARDIS, E. R. & GORDON, J. I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. nature, 444, 1027-1031.
TURNBAUGH, P. J., RIDAURA, V. K., FAITH, J. J., REY, F. E., KNIGHT, R. & GORDON, J. I. 2009b. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Science translational medicine, 1, 6ra14-6ra14.
VACCA, M., CELANO, G., CALABRESE, F. M., PORTINCASA, P., GOBBETTI, M. & DE ANGELIS, M. 2020. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms, 8.
VAN DE WOUW, M., SCHELLEKENS, H., DINAN, T. G. & CRYAN, J. F. 2017. Microbiota-gut-brain axis: modulator of host metabolism and appetite. The Journal of nutrition, 147, 727-745.
VYAS, U. & RANGANATHAN, N. 2012. Probiotics, prebiotics, and synbiotics: gut and beyond. Gastroenterology research and practice, 2012.
WACHSMUTH, H. R., WENINGER, S. N. & DUCA, F. A. 2022. Role of the gut–brain axis in energy and glucose metabolism. Experimental & Molecular Medicine, 54, 377-392.
WANG, G., LI, X., ZHAO, J., ZHANG, H. & CHEN, W. 2017. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food Funct, 8, 3155-3164.
WANG, X., OTA, N., MANZANILLO, P., KATES, L., ZAVALA-SOLORIO, J., EIDENSCHENK, C., ZHANG, J., LESCH, J., LEE, W. P., ROSS, J., DIEHL, L., VAN BRUGGEN, N., KOLUMAM, G. & OUYANG, W. 2014. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature, 514, 237-41.
WEINSTOCK, G. M. 2012. Genomic approaches to studying the human microbiota. Nature, 489, 250-256.
WEN, L. & DUFFY, A. 2017. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. The Journal of nutrition, 147, 1468S-1475S.
WU, G. D., CHEN, J., HOFFMANN, C., BITTINGER, K., CHEN, Y.-Y., KEILBAUGH, S. A., BEWTRA, M., KNIGHTS, D., WALTERS, W. A. & KNIGHT, R. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science, 334, 105-108.
YANG, Y., WENG, W., PENG, J., HONG, L., YANG, L., TOIYAMA, Y., GAO, R., LIU, M., YIN, M., PAN, C., LI, H., GUO, B., ZHU, Q., WEI, Q., MOYER, M. P., WANG, P., CAI, S., GOEL, A., QIN, H. & MA, Y. 2017. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-regulating Expression of MicroRNA-21. Gastroenterology, 152, 851-866.e24.
YARIBEYGI, H., FARROKHI, F. R., BUTLER, A. E. & SAHEBKAR, A. 2019. Insulin resistance: Review of the underlying molecular mechanisms. Journal of cellular physiology, 234, 8152-8161.
YARIBEYGI, H., SATHYAPALAN, T., ATKIN, S. L. & SAHEBKAR, A. 2020a. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxidative medicine and cellular longevity, 2020.
YARIBEYGI, H., SATHYAPALAN, T., MALEKI, M., JAMIALAHMADI, T. & SAHEBKAR, A. 2020b. Molecular mechanisms by which SGLT2 inhibitors can induce insulin sensitivity in diabetic milieu: A mechanistic review. Life sciences, 240, 117090.
YOSHIDA, N., EMOTO, T., YAMASHITA, T., WATANABE, H., HAYASHI, T., TABATA, T., HOSHI, N., HATANO, N., OZAWA, G., SASAKI, N., MIZOGUCHI, T., AMIN, H. Z., HIROTA, Y., OGAWA, W., YAMADA, T. & HIRATA, K. I. 2018. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation, 138, 2486-2498.
YUAN, X., CHEN, R., ZHANG, Y., LIN, X., YANG, X. & MCCORMICK, K. L. 2021. Gut microbiota of Chinese obese children and adolescents with and without insulin resistance. Frontiers in endocrinology, 12, 636272.
ZHANG, L., QIN, Q., LIU, M., ZHANG, X., HE, F. & WANG, G. 2018. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathog Dis, 76.
ZIMMERMANN, P. & CURTIS, N. 2019. The effect of antibiotics on the composition of the intestinal microbiota-a systematic review. Journal of Infection, 79, 471-489.
ZOETENDAL, E. G., VAUGHAN, E. E. & DE VOS, W. M. 2006. A microbial world within us. Molecular microbiology, 59, 1639-1650.