investigating the effect of porosity Percentage on heat transfer in plastic injection molds created by selective laser melting
Subject Areas : Journal of New Applied and Computational Findings in Mechanical SystemsSeyed mostafa MirTabaei 1 , Afshin Judaki 2 , Morteza Taher Niya 3
1 - Faculty of Imam Ali University (AS)
2 - مهندسی مکانیک، دانشگاه علم و صنعت، تهران
3 - مهندسی مکانیک، دانشگاه صنعتی مالک اشتر، تهران
Keywords: Plastic injection molding, porosity, heat transfer, additive manufacturing, selective laser melting.,
Abstract :
It is not possible to fabricate the complex geometry of coherent cooling channels with conventional machining methods, so channels can be created in the mold using additive manufacturing processes such as selective laser melting. Parts created by selective laser melting always have porosity, and the amount of porosity depends on process parameters. On the other hand, the ability to make porous materials with a selective laser melting process has made these materials with features such as lower density and better heat transfer in the aerospace industry, automobile, medical uses and heat exchangers to be the attention of researchers and according to Porosity Percentage, in addition to directly affecting mechanical properties, also affects heat transfer. In this research, the effect of porosity on heat transfer in the mold was investigated. First, the model and mold were designed, in order to investigate the effect of porosity, four simulation models with volume porosity percentage of 0, 10, 20 and 30% were performed and analyzed in the software. The analysis of the results shows that the increase in the percentage of porosity in the mold causes a faster increase in temperature in the mold, also with the increase in the percentage of porosity in the mold, the speed of temperature decrease in the mold increases. And the cooling of the part happens faster. Examining the results of the maximum thermal gradient of the non-porous material compared to the material with 30% porosity shows a 21% increase in the thermal gradient in the porous material
[1] Zheng, Z., Zhang, H.-o., Wang, G.-l., & Qian, Y.-p. (2011). Finite element analysis on the injection molding and productivity of conformal cooling channel. Journal of Shanghai Jiaotong University (Science), 16, 231-235.
[2] Liu, Y., Yang, Y., & Wang, D. (2016). A study on the residual stress during selective laser melting (SLM) of metallic powder. The International Journal of Advanced Manufacturing Technology, 87, 647-656.
[3] Gu, D., & Shen, Y. (2009). Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Materials & Design, 30(8), 2903-2910.
[4] Song, B., Dong, S., Zhang, B., Liao, H., & Coddet, C. (2012). Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Materials & Design, 35, 120-125.
[5] Qiu, C., Yue, S., Adkins, N. J., Ward, M., Hassanin, H., Lee, P. D., Withers, P. J., & Attallah, M. M. (2015). Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Materials Science and Engineering: A, 628, 188-197.
[6] Andreau, O., Koutiri, I., Peyre, P., Penot, J.-D., Saintier, N., Pessard, E., De Terris, T., Dupuy, C., & Baudin, T. (2019). Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting. Journal of Materials Processing Technology, 264, 21-31.
[7] Wang, D., Wu, S., Fu, F., Mai, S., Yang, Y., Liu, Y., & Song, C. (2017). Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties. Materials & Design, 117, 121-130.
[8] Andani, M. T., Dehghani, R., Karamooz-Ravari, M. R., Mirzaeifar, R., & Ni, J. (2018). A study on the effect of energy input on spatter particles creation during selective laser melting process. Additive Manufacturing, 20, 33-43.
[9] Stamp, R., Fox, P., O’neill, W., Jones, E., & Sutcliffe, C. (2009). The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. Journal of Materials Science: Materials in Medicine, 20, 1839-1848.
[10] Jimmy, J., & Prasetyo, V. R. (2022). Sentiment analysis on feedback of higher education teaching conduct: An empirical evaluation of methods.
[11] Huang, G., Min, Z., Yang, L., Jiang, P.-X., & Chyu, M. (2018). Transpiration cooling for additive manufactured porous plates with partition walls. International Journal of Heat and Mass Transfer, 124, 1076-1087.
[12] Hernandez Korner, M. E., Lambán, M. P., Albajez, J. A., Santolaria, J., Ng Corrales, L. d. C., & Royo, J. (2020). Systematic literature review: integration of additive manufacturing and industry 4.0. Metals, 10(8), 1061.
[13] Wang, L., Wei, Q. S., Xue, P. J., & Shi, Y. S. (2012). Fabricate mould insert with conformal cooling channel using selective laser melting. Advanced Materials Research,
[14] Cheng, Z., Xu, R., & Jiang, P.-X. (2021). Morphology, flow and heat transfer in triply periodic minimal surface based porous structures. International Journal of Heat and Mass Transfer, 170, 120902.
[15] Wong, M., Tsopanos, S., Sutcliffe, C. J., & Owen, I. (2007). Selective laser melting of heat transfer devices. Rapid Prototyping Journal, 13(5), 291-297.
[16] Stepanov, O., Rydalina, N., & Antonova, E. (2020). The use of porous metals in heat exchangers. IOP Conference Series: Materials Science and Engineering,
[17] Alkahari, M. R., Furumoto, T., Ueda, T., Hosokawa, A., Tanaka, R., & Abdul Aziz, M. S. (2012). Thermal conductivity of metal powder and consolidated material fabricated via selective laser melting. Key Engineering Materials,
[18] Rashidian, S., & Tavakoli, M. R. (2017). Using Porous Media to Enhancement of Heat Transfer in Heat Exchangers. International Journal of Advanced Engineering, Management and Science, 3(11), 239937.