تحلیل خمش صفحات ساندویچی کامپوزیتی بر اساس تئوری تغییر شکل برشی مرتبه اول با استفاده از روش مربعات دیفرانسیلی تعمیم یافته و هارمونیک
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineeringمصطفی یزدانی 1 , اعظم قاسمی 2 , محمد هدایتی 3
1 - دانشجوی کارشناسی ارشد ، دانشکده مکانیک، دانشگاه آزاد اسلامی واحد همدان، پردیس تحصیلات تکمیلی علوم و تحقیقات
2 - استادیار، دانشکده مکانیک، دانشگاه آزاد اسلامی واحد نجف آباد
3 - کارشناس ارشد ، دانشکده مکانیک، دانشگاه صنعتی اصفهان
Keywords: صفحات ساندویچی, خمش ورق, روش مربعات دیفرانسیلی تعمیم یافته, روش مربعات دیفرانسیلی هارمونیک, تئوری تغییرشکل برشی مرتبه اول,
Abstract :
هدف از این تحقیق، بکارگیری روشهای مربعات دیفرانسیلی تعمیمیافته و هارمونیک بهعنوان روشهای دقیق و سریع در تحلیل خمش صفحات ساندویچی میباشد. تحلیل خمش صفحات ساندویچی تحت شرایط مرزی و بارگذاریهای جانبی مختلف و با استفاده از دو روش مربعات دیفرانسیلی تعمیم یافته و مربعات دیفرانسیلی هارمونیک بر اساس دو تئوری کلاسیک و مرتبه اول برشی، انجام شده است. تأثیر ناهمسانگردی لایهها، زاویهی قرارگیری الیاف، نسبت ضخامت به طول صفحه، نسبت ضخامت هسته به پوسته بر مسئله خمش مورد مطالعه قرار گرفت. برای حل عددی از نرمافزار متلب استفاده شده است. مقایسه نتایج عددی بدست آمده ازدو روش مربعات دیفرانسیلی تعمیمیافته و هارمونیک با نتایج موجود در تحقیقات گذشته نشان از دقت، توانایی و نرخ همگرایی خوب این دو روش دارد. سرعت بالا و دقت بسیارخوب این روشها، اهمیت استفاده از آنها را به ویژه در حل مسائل پیچیده نشان میدهد. با استفاده از روش مربعات دیفرانسیلی تعمیم یافته نشان داده شد که با افزایش نسبت ناهمسانگردی پوستهها مقدار تغییر مکان ماکزیمم جانبی صفحه کاهش مییابد. در بررسی زاویه قرارگیری الیاف مشخص شد که مقدار تغییر مکان بدست آمده، به زاویهی قرارگیری الیاف بستگی دارد. نسبت ضخامت هسته به پوسته مورد یررسی قرار گرفت و نشان داده شد که با افزایش نسبت ضخامت هسته به پوسته، تغییر مکان ماکزیمم صفحه کاهش مییابد. همچنین بارگذاریهای مختلفی استفاده شده است که نشان میدهد استفاده از این روش محدود به نوع بارگذاری خاصی نیست.
[1] Pandit M.K., Singh B.N., Sheikh A.H., Buckling of laminated sandwich plates with soft core based on an improved higher order zigzag theory, Journal of Thin-Walled Structures, Vol. 46, 2008, pp. 1183– 1191.
[2] Leissa A.W., Review of laminated composites plate buckling, Applied Mechanical Rev, Vol. 40, 1987.
[3] Levy M., Sur L’equilibrie Elastique d’une Plaque Rectangulaire, Compt Rend, Vol. 129, 1899, pp. 535-539.
[4] Timoshenko S.P., woinowsky – Krieger.S., Theory of plates and shells , 2d ed., McGraw Hill, New York, 1959.
[5] هنرجو ، ب،" آنالیز صفحات لایه لایه مرکب به روش differential quadrature "، دانشگاه شیراز ، 1378.
[6] Whitney J.M., Pagano.N J, Shear deformation in heteogeneous anisotropic plates, ASME Journal of Applied Mechanical, Vol. 37,1970, pp. 1031-1036.
[7] Bert C.W., Chen T.L.C., Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectangular plates, International Journal of Solids Structure, Vol. 14, 1978, pp. 465-473.
[8] Reddy J.N., Chao W.C., A comparison of closed-form and finite-element solutions of thick, laminated, anisotropic rectangular plates, Nuclear Engineering and Design, Vol. 64, 1981, pp. 153-167.
[9] Kant T., Numerical analysis of thick plates, Computation and Mathematics Applied Mechanical Engineering, Vol. 31, 1982, pp.1–18.
[10] Pandya B science N., Kant T., A consistent refined theory for flexure of a symmetric laminate, Mechanics Research Communications, Vol, 14, 1987, pp.107–113.
[11] Pandya BN., Kant T., Higher order shear deformable theories for flexure of sandwich plates –finite element evaluations.InternationalJournal of Solids Structures, Vol. 24(12), 1988, pp. 1267–86.
[12] Pandya BN., Kant T., Flexure analysis of laminated composites using refined higher order C_ plate bending elements Computation and Mathematics Applied Mechanical Engineering, Vol. 66, 1988, pp. 173–98.
[13] Pandya BN., Kant T., A refined higher order generally orthotropic C_ plate bending element. Composite Structures, Vol. 28, 1988, pp. 119–133.
[14] Pandya BN., Kant T., Finite element stress analysis of laminated composites using higher order displacement model, Composite science Technology, Vol. 32, 1988, pp. 137–155.
[15] Kant T., Manjunatha BS., An unsymmetric FRC laminate C_ finite element model with 12 degrees of freedom per node. Eng Comput, Vol. 5(3), 1988, pp. 300–308.
[16] Swaminathan K., Patil S.S., Nataraja M.S, Mahabaleswara K.S., Bending of sandwich plates with anti-symmetric angle-ply face sheets – Analytical evaluation of higher order refined computational models, Composite Structures, Vol. 75, 2006, pp. 114–120.
[17] Bellman R., Casti J., Differential quadrature and long-term integration, Journal of Mathematical Analysis and Applications, Vol. 34, 1971, pp. 235–238.
[18] Bellman R.E., Kashef B.G., Casti J., Differential quadrature: a technique for a rapid solution of nonlinear partial differential equations, Journal Computational Physics, Vol. 10, 1972, pp. 40–52.
[19] Bert C.W., S.K. Jang., Striz A.G., Two new approximate methods for analyzing free vibration of structural components, AIAA Journal, Vol. 26, 1988, pp. 612-618.
[20] Bert C.W., Malik M., Differential quadrature in computational mechanics: a review, Applied Mechanical Review, Vol. 49, 1996, pp. 1–27.
[21] Chen W., Shu C., He W., Zhong, T., The application of special matrix product to differential quadrature solution of geometrically nonlinear bending of orthotropic rectangular plates, Composite Structures, Vol. 74, 2000, pp. 65–76.
[22] Chen W., Tanaka M.A., Study on time schemes for DRBEM analysis of elastic impact wave, Computational Mechanics, Vol. 28, 2002, pp. 331–338.
[23] Bert C.W., Jang S.K., Striz A.G., Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature. Computational Mechanics, Vol. 5, 1989, pp. 217–226.
[24]. Bert C.W., Wang X., Striz, A.G., Differential quadrature for static and free vibration analyses of anisotropic plates, International Journal of Solids Structures, Vol. 30, 1993, pp.1737–1744.
[25] Wang X., Bert C.W., A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates, Journal of Sound Vibration, Vol. 162, 1993, pp. 566–572.
[26] Wang X., Gu H., Static analysis of frame structures by the differential quadrature element method. International Journal Numer Mechanical Eng, Vol. 40, 1997, pp. 759–772.
[27] Wang X., Wang Y., Free vibration analyses of thin sector plates by the new version of differential quadrature method. Computation and Mathematics Applied Mechanical Engineering, Vol. 193, 2004, pp. 3957–3971.
[28] Wang X., Differential quadrature for buckling analysis of laminated plates. Computers and Structures, Vol. 57, 1995, pp. 715–719.
[29] Civan F., Sliepcevich C.M., Differential quadrature for multidimensional problems, Journal of Mathematical Analysis and Applications, Vol. 101, 1984, pp. 423– 443.
[30] Shu C., Richards B.E., Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stoaks equations, International Journal for Numerical Methods in Engineering, Vol. 15, 1992, pp.791–798.
[31] Shu, C., Wang, C.M., Treatment of mixed and non-uniform boundary conditions in GDQ vibration analysis of rectangular plate, Engineering Structures, Vol. 21, 1999, pp.125–134.
[32] Du, H., Lim, M.K., Lin, R.M., Application of generalized differential quadrature method to structural problems, International Journal for Numerical Methods in Engineering, Vol. 37, 1994, pp. 1881–1896.
[33] Wang, X., Wang, X., Shi, X., Differential quadrature buckling analyses of rectangular plates subjected to non-uniform distributed in-plane loadings. Thin-Walled Structures, Vol. 44, 2006, pp. 837–843.
[34] Hsu, M.H., Vibration analysis of annular plates using the modified generalized differential quadrature method, Journal of Applied science, Vol. 6(7), 2006, pp. 1591–1595.
[35] Tornabene, F., Viola, E., A generalized differential quadrature solution for laminated composite shells of revolution, In, Proceedings of 8th World Congress on Computational Mechanics. Venice Italy, 2008
[36] Striz, A.G., Wang, X., Bert, C.W., Harmonic differential quadrature method and applications to analysis of structural components, Acta Mechanical, Vol. 111, 1995, pp. 85–94.
[37] Liew, K.M., Teo, T.M., Han, J.B., Comparative accuracy of DQ and HDQ methods for three dimensional vibration analyses of rectangular plates, International Journal for Numerical Methods in Engineering, Vol. 45, 1999, pp. 1831–1848.
[38] Civalek, Ö., Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns, Engineering Structures, Vol. 26, 2004, pp. 171–186.
[39] Malekzadeh, P., Karami,G., Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates, Engineering Structures, Vol. 27, 2005, pp. 1563–1574.
[40] Civalek, Ö, Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation, Journal of Sound Vibration, Vol. 294, 2006, pp. 966–980.
[41] Vinson J.R., Plate and panel structures of isotropic, composite and piezoelectric materials, including sandwich construction, Springer, Netherlands, 2005.
[42] Jones R. Mechanics of composite materials, Scripta Book Company 1975.
[43] Kolakowski Z , Kowal-michalska K. Selected problems of in stabilities in composite structures. A Series of Monographs, Technical University of Lodz, 1999.
[44] Mania R. Buckling analysis of trapezoidal composite sandwich plate subjected to in-plane compression, Composite Structures, Vol. 69. 2005, pp. 482–490.
[45] Nayak A.K, Moy S.S.J, Shenoi R.A. A higher order finite element theory for buckling and vibration analysis of initially stressed composite sandwich plates. Journal of Sound Vibration, Vol. 286, 2005, pp. 763–780.
[46] Civan, F., Sliepcevich, C.M., Differential quadrature for multidimensional problems, Journal of Mathematical Analysis and Applications, Vol. 101, 1984, pp. 423– 443.
[47] Shu, C., Xue, H., Explicit computations of weighting coefficients in the harmonic differential quadrature. Journal of Sound Vibration, Vol. 204, 1997, pp. 549–555.
[48] Wang, X., Gan, L., Zhang, Y., Differential quadrature analysis of the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite sides , Advances in Engineering Software, Vol. 39, 2008, pp. 497–504.
[49] Tornabene, F., Viola, E., 2-D solution for free vibrations of parabolic shells using generalized differential quadrature method, European Journal of Mechanical A/Solids, Vol. 27, 2008, pp. 1001–1025.