مدلی برای بررسی انتقال حرارت در یک محفظه با استفاده از نانو آئروسل
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineeringنوید قاجاری 1 , داود طغرایی 2 , احمدرضا عظیمیان 3
1 - کارشناسی ارشد، دانشکده مکانیک، دانشگاه آزاد اسلامی خمینی شهر، اصفهان، ایران.
2 - استادیار، دانشکده مکانیک، دانشگاه آزاد اسلامی خمینی شهر ، اصفهان، ایران.
3 - استاد، دانشکده مکانیک، دانشگاه آزاد اسلامی خمینی شهر ، اصفهان، ایران.
Keywords: نانوذره, انتقال حرارت جابجایی, نانو سیال, آئروسل,
Abstract :
در این پژوهش به بررسی رفتار نانوذرات با استفاده از یک مدل عددی پرداخته شده است. برای این مطالعه از مدل فازهای مجزا برای بررسی انتقال حرارت جابجایی آزاد و ترکیبی در یک محفظه مستطیلی شکل با ابعاد 1×4 سانتیمتر مربع با استفاده از نانوآئروسل هنگامی که نانوذرات مس در هوا در جریان است، استفاده شده است و با تغییر در اختلاف دما در دیواره گرم و سرد، تاثیر آن را بر میزان انتقال حرارت بررسی شده است. شبیه سازی فوق شامل شبیه سازی جریان دو بعدی و آرام است و حالت شار ثابت بر روی 2 وجه جانبی در جابجایی آزاد و دمای ثابت بر روی وجه بالایی(صفحه سرد) با دمای 300 کلوین در نظر گرفته شد و دما در وجه پایینی (صفحه گرم) در سه حالت 350، 400 و 450 کلوین مقایسه شد. توزیع دما، بردار سرعت، شار حرارت سطح و عدد ناسلت در طول مسیر بررسی شده است.
[1] Murshed S.M.S., Leong K.C., and Yang C., Thermophysical and electrokinetic properties of Nanofluids – A critical review, Applied Thermal Engineering, Vol. 28, 2008, pp. 2109-2125.
[2] Kreidenweis S.M, Asa Awuku A, Aerosol Hygroscopicity: Particle Water Content and Its Role in Atmospheric Processes,Reference Module in Earth Systems and Environmental SciencesTreatise on Geochemistry (Second Edition), Vol. 5, 2014, pp. 331-361.
[3] Masuda H., Ebata A., Teramae K., Hishinuma N., Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of g-Al2O3, SiO2, and TiO2 ultra-fine particles(, Netsu Bussei, 7, 1993, pp. 227.233.
[4] Schild A, Gutsch A, M¨uhlenweg H, Pratsinis, S.E, Simulation of nanoparticle production in premixed aerosol flow reactors byinterfacing fluid mechanics and particle dynamics, Journal of Nanoparticle Research,Vol. 10, 1991, pp. 305-315.
[5] Akbar M.K, Rahman M, Ghiaasiaan S.M, Particle transport in a small square enclosure in laminar natural convection, Journal of Aerosol Science, Vol. 40, 2009, pp.747-761.
[6] Pommerenck J, Alanazi Y, Gzik T, Vachkov R, Hackleman D.E, Recovery of a multicomponent, single phase aerosol with a difference in vapor pressures entrained in a large air flow, Journal. Chem. Thermodynamics, Vol. 46, 2012, pp. 109-115.
[7] Lee S., Choi S.U.S., Li S., Eastman J.A., Measuring thermal conductivity of fluids containing oxid nanoparticles, Journal of heat transfer, Vol. 121, 1999, pp. 280.289.
[8] Zeinali Heris S., Kazemi-Beydokhti A., Noie S.H., Rezvan S., Numerical study on convective heat transfer of Al2O3/water, CuO/water, Cu/water nanofluids through square crass-section duct in laminar flow, Engineering Applications of Computational Fluid Mechanics, Vol. 6, 2012, pp. 1-14.
[9] Santra A.K, Sen S. and Chakraborty N, Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates, International Journal of Thermal Sciences, Vol. 48, 2009, pp. 391-400.
[10] Shukla K.N., Solomon A.B., Pillai B.C., Ruba Singh B.J., Kumar S.S., Thermal performance of heat pipe with suspended nano-particles, Heat Mass Transfer, Vol. 46, 2012, pp. 1913-1920.
[11] Buongiorno J., Convective transport in nano fluids, Journal of Heat Transfer-Transactions of the ASME, Vol. 128, 2006, pp. 240-250.
[12] Hakan F.O., Abu-Nada E., Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat and Fluid Flow. Vol. 29, 2008, pp. 1326.1336.
[13] Pallares J.N., Grau F.X., Particle dispersion in a turbulent natural convection channel flow, Journal of Aerosol Science, Vol. 43, 2012, pp. 45-56.
[14] Hudson A., Computational Analysis to Enhance Laminar Flow Convective Heat Transfer Rate in an Enclosure Using Aerosol Nanofluids, Electronic Theses & Dissertations, Vol. 12, 2013,pp. 10-48.
[15] Ounis H., Ahmadi G., Mclaughlin J.B., Dispersion and Deposition of Brownian Particles from Point Sources in a Simulated Turbulent Channel Flow, Journal of Colloid and Interface Science, Vol. 147, 1991, pp. 233-250.
[16] Talbot L., Cheng R.K., Schefer R.W., Willis D.R., Thermophoresis of Particles in a Heated Boundary Layer, Journal of. Fluid Mechanics, Vol. 101, 1980, pp. 737-758.
[17] Cheng P, Two-Dimensional Radiating Gas Flow by a Moment Method, AIAA Journal, Vol. 2, 1964, pp. 1662-1664.