The Effect of Nano MgCr2O4 Functionalized By Silanol Group to Improve Physical and Mechanical Properties of Direct Bonded Mag- Chrome Refractories
Subject Areas :Najme lotfian 1 , Amirabbas Nourbakhsh 2 , Seyed Nezamoddin Mirsattari 3
1 - Department of Materials Science and Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
2 - Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Iran
3 - Razi Chemistry Research Center (RCRC), Shahreza Branch, Islamic Azad University, Isfahan, Iran.
Keywords: Mag, Chrome Spinel Functionalize Sintering,
Abstract :
In this research in order to disperse nano additives through the matrix of mag- chrome refractories, a novel approach by using the silanol surface group was reported. In this regard, the modified of nano MgCr2O4 particles have been done by functionalizing of MgCr2O4 by 3-(thriethoxsilyl)propyl amine (APTES) silanol group. Then 1% MgCr2O4 nano additives (with and without surface group) were added to mag- chrome matrix and pressed under a uniaxial press at 120 MPa pressure and then fired at 1600 ℃. XRD and TEM analysis were used to evaluate the synthesis of nano particles. FTIR and XRD analysis were carried out to investigate the presence of surface group of nano particles. Phase analysis and microstructure investigation have been done by XRD and SEM analysis. The physical and mechanical properties, were determined according to the respective DIN standards. Also XRD and FTIR analysis confirmed the presence of functionalized groups on the surface of nano particles. DLS analysis of functionalize and not functionalized nanoparticles shows the the decrease of particle size in presence of silanol groups, the UV analysis confirmed better dispersion of nano particles due to higher adsorption of functionalized nano particles. XRD results of mag-chrome samples showed increasing of secondary spinel in presence of functionalized nano additives which could related to better dispersion of nano additives which caused to promote nucleation of spinel phases and result in solid state sintering and could effect on the physical and mechanical properties.
[1] A. Azhari, F. Golestani-Fard & H. Sarpoolaki, "Effect of nano iron oxide as an additive on phase and microstructural evolution of Mag-Chrome refractory matrix", J. Eur. Ceram. Soc, vol. 29, pp. 2679-2684, 2009.
[2] Z. Huizhong, H. Shoutian & W. Houzhi, "The influence of nano- Fe2O3 on sintering and mechanical performance of magnesia- chrome refractory", Unitcer, pp. 284-287, 2003.
[3] Y. Jingkun, D. Shuping & G. Xinkul, "Effect of additives on the densification of magnesia- chrome refractory", Unitcer, pp. 102-105, 2003.
[4] M. Bavand-Vandchali, H. Laeh & B. Fotouhi-Ardakani, "Effect of TiO2 and ZrO2 on the properties and microstructure of MgO-chrome refractory co-clinker", Unitcer, 2009.
[5] H. Zargar, "Sintering studies of magnesia- chromite refractory composites", Doctor of Philosophy Tizzies, 2014.
[6] A. R. Studrat & V. C. Pandolfelli. "Surface chemistry as a tool for the development of advanced refractory casrables. Chapter 12, Refractory handbook, CRC Press, pp. 335-367, 2004.
[7] W. C. Allen, "The series MgCr2O4 – MgFe2O4", J. American ceramic society, vol. 51, pp. 485-490, 1968.
[8] G. C. Ulmer, "Oxidation- reduction reactions and equilibrium phase relation at 1300℃ at oxygen pressures from E-14 atm for the spinel solid solution series FeCr2O4 – MgCr2O4 and FeCr2O4 – MgAl2O4", Penn. State. Univ. University Park, 1964.
[9] J. R. Rait, "An X-Ray investigation into the constitution of chrome ores", Iron Steel Inst. (London) Spec. Rept, vol. 32, pp. 175-209, 1946.
[10] L. V. Morozova & V. P. Popov, "Synthesis and investigation of magnesium chromium spinel", Glass Phys. Chem, vol. 36, pp. 86-91, 2010.
[11] S. Li, X. Jia & Y. Qi "Synthesis of nano crystalline magnesium chromite spinel by cutrate sol gel method", Advanced Materials research, vol. 284, pp. 730-733, 2011.
[12] N. Lotfian, A. A. Nourbakhsh, S. N. Mirsattari, A. Saberi Kenneth & J. D. Mackenzie, "A comparison of the effect of nanostructured MgCr2O4 and FeCr2O4 additions on the microstructure and mechanical properties of direct-bonded magnesia-chrome refractories", Ceramics International, vol. 46, pp. 747-754, 2020.
[13] M. Sabzi, S. M. Mirabedini, J. Zohuriaan-Mehr & M. Atai, "Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating", Progress in Organic Coatings, vol. 65, pp. 222–228, 2009.
[14] C. A. Dincer, N. Yildiz, N. Aydogan & A. Calimil, "A comparative study of Fe3O4 nanoparticles modified with different silane compounds", Applied surface science, vol. 318, pp. 297-304, 2014.
[15] B. Peng, C. Takia, H. Razavi-khosroshahi & M. Fuji, "Effect of silane modification on CNTs/silica composites fabricated by a non-firing process to enhance interfacial property and dispersability", Advanced powder technology, vol. 29, pp. 2091-2096, 2018.
[16] M. J. De Andrade, M. D. Lima, R. Bonadiman & C. P. Bergmanm, "Nanocrystalline pirochromite spinel through solution combustion synthesis", J. Mater. Res. Bull, vol. 41, pp. 2070-2079, 2006.
[17] S. Li, X. Jia & Y. Qi, "Synthesis of nano crystalline magnesium chromate spinel by citrate sol-gel method". J. Adv. Mater. Res, no. 284-286, pp. 730-733, 2011.
[18] A. H. Taghvaei, H. Shokrollahi, A. Ebrahimi & K. Janghorban, "Soft magnetic composites of iron- phenolic and the influence of silane coupling agent on the magnetic properties" Material chemistry and physics, vol. 116, pp. 247-253, 2009.
[19] Silane Coupling Agents - Shin-Etsu Silicone, www.shinetsusilicone-global.com, 2017.
[20] J. Zhao, M. Milanova, A. M. C. G. Warmoeskerken & V. Dutschk, "Surface modification of TiO2 nanoparticles with silane coupling agents", Colloids and surface A: Physicochemical and engineering aspects, vol. 413, pp. 273-279, 2012.
[21] A. Rabiee, "Silane modifying agents: introduction and application", polymerization, vol. 6, pp. 34-43, 2015.
[22] M. Yamaura, R. L. Camilo, L. C. Sampaio, M. A. Maceddo, M. Nakamura & H. E. Toma, "Preparation and characterization of (3-aminopropyl) triethoxysilane- coated magnetite nanoparticles", Journal of magnetism and magnetic materials, vol. 279, pp. 210-217, 2004.
[23] J. Hu, W. Zhao, R. Hu, G. Chang, C. Li & L. Wan, "Catalytic activity of spinel oxides MgCr2O4 and CoCr2O4 for methane combustion", Materials Research Bulletin, vol. 57, pp. 268–273, 2014.
[24] A. Brichni, H. Hammi, S. Aggoun & M. Adel, "Optimization of magnesium oxychloride cement properties by silica glass", Advances in Cement Research, vol. 28, pp. 1-10, 2016.
[25] M. Yan, D. Yang, Y. Deng, P. Chen, H. Zhou & X.Qiu "Influence of pH on the behavior lignosulfonate macromolecules in aques solution", colloids and surfaces A: physicochemical and engineering aspects, vol. 371, 50-58, 2010.
[26] D. Yang, X. Qiu, Y. Pang & M. Zhou, "Physicochemical properties of calcium lignosulfonate with different molecular weights as dispersant in aqueous suspension", Journal of dispersion science and technology, vol. 29, pp, 1296-1303, 2008.
[27] M. Abboud, T. Sahlabji, M.Abu Haija & A. A. EI-Zahhar, "Synthesis and characterization of lignosulfonate/amino functionalized SBA-15 nanocomposite for the adsorption of methylene blue from wastewater", New journal of chemistry, vol. 44, pp. 2291-2302, 2020.
[28] Sh. Zhou, L. Wu, M. Xiong, Q. He & G. Chen, "Dispersion and UV-VIS properties of nanoparticles in coating", Journal of dispersion and technology, vol. 25, pp. 417-433, 2004.
[29] J. Njuguna, O. Arda Vanli & R. Liang, "A review of spectral methods for dispersion Characterization of carbon nanotubes in aqueous suspension", Journal of spectroscopy, 2015.
[30] م. خلیلی و م. پویامهر، "ساخت و بررسی خواص دیر گدازهای ریختنی آلومینا اسپینلی، با استفاده از سیمان آلومینا بالا، حاوی آلومینا و دولومیت". فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 1، صفحه 158-143، 1394.
_||_