Effect of TiO2 Content of the Slag of Electro Slag Remelting Process on Chemical Composition, Microstructure and Mechanical properties of Recycled IN713LC
Subject Areas :مرتضی زمانی 1 , معصومه سیف اللهی 2 , سید مهدی عباسی 3
1 - دانشگاه صنعتی مالک اشتر
2 - دانشگاه صنعتی مالک اشتر
3 - دانشگاه صنعتی مالک اشتر
Keywords: chemical composition, IN713LC superalloy scrap, Electro Slag Remelting process, TiO2 addition, rupture strength,
Abstract :
Recycling of industrial scrap of IN317LC superalloys via ESR process is investigated in this article. The purpose of this study is reach to the best chemical composition, microstructure and mechanical properties according to AMS5377E standard. Different levels of TiO2 (0, 3, 6 wt %) were added to 70CaF2-30Al2O3 ESR slag. The results show that in slag wih 3 wt % TiO2, Ti loss compensate by Oxidation-Reduction reaction between slag and melt. As a result of the variation of slag activity, oxygen and nitrogen of the recycled ingot reach to 14.3 and 16 ppm, respectively. In addition, this ingot has the maximum level of γ' particle with minimum size because of high level of (Ti+Al) of this recycled alloy, the good microstructure and the stress rupture life of 47 hr obtained. In the recycled ingot by 6 wt % TiO2, despite of compensation of Ti loss and increase of Ti level, the mechanical properties reduced as a result of reduction of γ' volume fraction.
[1] D. V. V. Satyanarayana & N. Eswara Prasad, “Nickel-Based Superalloys”, Aerospace Materials and Materials Technologies, Springer Singapore, pp. 199-228, 2017.
[2] N. D. Souza, “Solidification path in the Ni-base superalloy IN713LC- quantitative correlation of last stage solidification”, Scripta Materialia, Vol. 53, pp. 729-733, 2005.
[3] J. Zyka, I. Andrsova, B. Podhorna & K. Hrbacek, “Mechanical properties and microstructure of IN713LC nickel superalloy casting”, Metal, Vol. 5, pp. 15-17, 2013.
[4] J. F. Papp, “Recycling-metals”, Metal, pp. 62-73, 1997.
[5] M. J. Would, “Recycling of engine serviced superalloys”, superalloys, pp. 31-41, 1980.
[6] D. J. Dyson, “Studies in development of superalloys and clean”, Iron and steel making, Vol. 25, pp. 279-286, 1998.
[7] R. C. Reed, “The Superalloys Fundamentals and Applications”, Cambridge University, First edition, 2006.
[8] Demmons, C. Alan “Superalloy metallurgy a gleeble study of. diss.”, California Polytechnic State University, San Luis Obispo, 2016.
[9] G. K. Bahat, “Manufacture of shaped casting through electro slag remelting process”, The Iron and Steel Institute of Japan, proceeding of the forth internatonal symposium on electroslag remelting processes, pp. 196-208, 1973.
[10] V. V. Prasad & A. Sambasiva Rao, “Electroslag melting for recycling scrap of valuable metals and alloys”, Recycling of Metals and Engineered Materials, pp. 503-516, 2000.
[11] ا. جعفری، س. م. عباسی، م. مرکباتی و م. سیف اللهی، "اثر نوع فرآیند ذوب مجدد بر ریزساختار و سختی سوپرآلیاژ پایه نیکل ریختگی IN100"، نشریه فرآیندهای نوین در مهنذسی مواد، دوره 9، شماره 2، صفحه 55-66، 1394.
[12] H. J. Klein & J. W. Pridgeon, “Effective electroslag remelting of superalloys”, TheMinerals, Metals and Materials Society, pp. 25-31, 1972.
[13] AMS Committee "F", Nickel alloy, corrosion and resistanat, investment castings, SAE AMS5377E, American naional standard, 1996.
[14] M. Maeda, T. Yahata, K. Mitugi & T. Ikeda, “Aluminothermic reduction of titanium oxide”, Materials Transactions, Vol. 34, pp. 599-603, 1993.
[15] Kharicha, W. Schutzenhofer, A. Ludwig, G. Reiter, “Infuence of the Slag/Pool Interface on the Solidification in an Electro-Slage Remelting Process”, Materials Science Forum, Vol. 649, pp. 229-236, 2010.
[16] W. Dwight, “Investigation into critical parameters which determine the oxygen refining capability of the slag during electroslag remelting of alloy 718”, Vol. 180, 1993.
[17] J. Chipman & D. A. Corrigan, “Advanced materials and processing techniques”, Metallurgical Transact, Vol. 233, pp. 1249, 1965.
[18] L. Lin, T. Huang & M. Qu, “High thermal gradient directional solidification and its application in the processing of Nickel-based superalloys”, materials processing technology, Vol. 210, pp. 159-165, 2010.
[19] B. C. Wilson, E. R. Cutler & G. E. Fuchs, “Effect of solidification parameters on the microstructures and properties of CMSX-10”, Materials Science and Engineering, Vol. 479, pp. 356-364, 2008.
[20] ع. زندگانی و س. ناطق، " تغییرات ریزساختار و رشد رسوبات گاماپرایم در اثر عملیات حرارتی طولانی مدت در سوپرآلیاژ پایه نیکل"، نشریه فرآیندهای نوین در مهندسی مواد، دوره 1، شماره 1، صفحه 25-32، 1386.
[21] T. Shibata & Y. Shudo, “Effect of Al, Ti and Nb on the time-temperature behavior of alloy 706”, Metals and Materials Society, pp. 153-162, 1996.
_||_