Removal of Heavy Metal Ions from Polluted Waters by Using of Low Cost Adsorbents: Review
Subject Areas : Journal of Chemical Health RisksM. Ghaedi 1 , N. Mosallanejad 2
1 - Department of Chemistry, Graduate student, Firuz Abad Branch, Islamic Azad University, Fars, Iran
2 - Department of Chemistry, Graduate student, Firuz Abad Branch, Islamic Azad University, Fars, Iran
Keywords:
Abstract :
- Bennett P.M., Jepson P.D., Law R.J., Jones
- B.R., Kuiken T., Baker J.R., Rogan E., Kirkwood
- J.K., 2001. Exposure to heavy metals and infectious
- disease mortality in harbour porpoises from England
- and Wales. Env. Pol. J. 112,33-40.
- Fujise Y., Honda K., Tatsukawa R., Mishima, S.,
- Tissue distribution of heavy metals in Dallâââ¢s
- porpoise in the northwestern Pacific. Mar. Pol. Bul.
- J. 19, 226-30.
- Honda K., Tatsukawa R., Itano K., Miyazaki N. ,
- Fujiyama T., 1983. Heavy metal concentrations in
- muscle, liver and kidney tissue of Striped dolphin
- Stenella coeruleoalba and their variations with body
- length, weight, age and sex. Agr and Biolog. Chem.
- J. 47, 1219-1228.
- Parsons E.C.M., 1999. Trace metal concentrations
- in the tissues of cetaceans from Hong Kongâââ¢s
- territorial waters. Env. Con. 26, 30-40.
- Piotrowski J.K., Coleman D.O., 1980.
- Environmental hazards of heavy metals: summary
- evaluation of lead, cadmium.and mercury . a general
- report. UNEP, Nairobi, 23,123-128.
- Quaterman J., 1986. Lead. In: Trace metals in
- human and animal nutrition. Academic Press,
- Florida. 12, 23-28.
- Huang C. P., Wu M. H., 1975. Chromium
- removal by carbon adsorption of the Water. Pol.
- Cont. Fed. J. 47, 2437-2445.
- Lokeshwari N., Joshi. K., 2009. Biosorption of
- Heavy Metals using Biomass. Envl. Res.J. 3, 29-35.
- Singanan M., Vinodhini S., Alemayehu A.,
- Phytoremediation of heavy metals from
- industrial waste waters by using indigenous
- biomaterials. Env. Pro. J. 26(5), 385-391.
- Chaiko D.J, Kopasz J.P., Ellison J.G., 1998. Use
- of Sol-Gel system for solid/liquid separation, Ind
- and Eng Chem Res. 37, 1071-1078.
- WellerM.G., 2000. Immunochromatographic
- techniques-a critical review, Anal. Chem. J. 366,
- -645.
- Ghorai S., Pant K.K., 2005. Equilibrium,
- kinetics and breakthrough studies for adsorption of
- fluoride on activated alumina. Pur. Tech .42, 265-
- Martone Pt, Estevez Jm., Lu F., Ruel K.,
- Denny Mw., Somerville C., Ralph J., 2009.
- Discovery of Lignin in Seaweed Reveals
- Convergent Evolution of Cell-Wall Architecture.
- Cur. bio .19 (2), 169âââ75.
- Sjöström E., Wood Chemistry: Fundamentals and
- Applications, 1993.
- Boerjan W., RalphJ., Baucher M., 2003. Lignin
- bios. Ann. Rev. Plant Biol. 54 (1), 519âââ549.
- Chabannes M., 2001. In situ analysis of lignins
- in transgenic tobacco reveals a differential impact of
- individual transformations on the spatial patterns of
- lignin deposition at the cellular and subcellular
- levels. Plant J. 28 (3), 271âââ282.
- Ralph et al., 2001. Elucidation of new structures
- in lignins of CAD- and COMT-deficient plants by
- NMR. Phytochem. J. 57 (6), 993âââ1003.
- Lagtah L. et al., 2005. use of lignin as an
- adsorbent and as a precursor of activated carbons
- (ACs) in order to remove Cd+2, Cu2+ and Zn2+ ions
- from aqueous solutions. Ing. Chem. J. 65, 234-266.
- Guo J. et al., 2009. Adsorption of metal ions on
- lignin. Plant. J. 32, 234-245.
- Carrott P. J. M, Ribeiro Carrott M. M. L., 2007.
- Use of low cost biosorbent as lignin for adsorption
- and purification waste water. Technol. J. 98, 2301-
- Srivastava S. K., Singh A. K., Sharma A., 1994.
- High uptake of Pb (II) and Zn (II) by using lignin
- extracted from black liquor. Environ. Technol. 15 ,
- -360.
- Managing Coal Combustion Residues in Mine,
- Committee on Mine Placement of Coal Combustion
- Wastes, National Research Council of the National
- Academies, 2006.
- American Coal Ash Association www.acaausa.
- org.
- Snellings R., Mertens G., Elsen J., 2012.
- Supplementary cementitious materials. Mineral and
- Geochem. Rev. 74, 211-278.
- Scott Allan N., Thomas Michael D. A., 2007.
- Evaluation of Fly Ash from Co-Combustion of Coal
- and Petroleum Coke for Use in Concrete. ACI.
- Materi .J . 1,62âââ70.
- Duxson P., Provis J.L., Lukey G.C., van
- Deventer J.S.J., 2007. The role of inorganic
- polymer technology in the development of 'Green
- concrete'". Cement and Concrete Research 37 (12):
- âââ1597.
- Panday K.K., Prasad .G. Singh V.N., 1985.
- Copper (II) removal from aqueous solutions by fly
- ash, Water Res. 19, 869âââ873.
- Viraraghavan, G., Rao A.K., 1991. Adsorption
- of cadmium and chromium from wastewater. Env.
- Sci. Health. J. 26 (5) 721âââ753.
- Kumar K.V, Ramamurthi V., Sivanesan S.,
- Modeling the mechanism involved during the
- sorption of methylne blue onto fly ash, Colloid
- Interface Sci. J. 284: 14âââ21.
- Weng C.H, Huang C.P., 1994. Treatment of
- metal industrial water by fly ash and cement
- fixation, Environ. Eng. Div. J. ASCE 120, 1470âââ
- Weng C.H., Huang C.P., 2004. Adsorption
- characteristics of Zn(II) from dilute aqueous solution
- by fly ash. Colloids and Surfaces A: Physicochem,
- Eng. Aspects 247, 137âââ143.
- Baya B. T., 2002. Comparative study of
- adsorption properties of Turkish fly ashes âââI. The
- case of nickel (II), copper (II) and zinc (II), Hazard.
- Mater. B J. 95:251âââ273.
- Heechan Cho., 2001. The possibility of the
- utilization of coal fly ash as a low cost
- adsorbent.Env J. 5,123-131.
- Julia A., 2006. the efficiency of fly ash in the
- removal of heavy metals (Cd and Cu).Env. J. 23, 14-
- Cadena F., Rizvi R., Peters. R. W., Feasibility
- studies for the removal of heavy metals from
- solution using tailored bentonite. In Hazardous and
- industrial Wastes, Proceedings of the Twenty âââ
- Second Mid-Atlantic Industrial Waste Conference,
- Drexel University, 1990.
- Johansson L., 1999. Blast furnace slag as
- phosphorus sorbentsâââcolumn studies. Sci. Total
- Environ.229, 89-97.
- Gruenberg B., Kern, J., 2001. Phosphorus
- retention capacity of iron-ore and blast furnace slag
- in subsurface flow constructed wetlands. WST, 44,
- -75.
- Kostura B., Kulveitová H., Leà ¡ko, J., 2005.
- Blast furnace slagsas sorbents of phosphate from
- water solutions. Water Res., 39, 1795-1802.
- Korkusuz E.A., Beklioßlu M., Demirer G.N.,
- Use of blast furnace granulated slag as a
- substrate in vertical flow reed beds: Field
- application. Bioresour. Technol., 98, 2089-2101.
- Ouki S.K, Kavannagh M., 1997. Performance of
- natural zeolites for the treatment of mixed metalcontaminated
- effluents, Waste Manage. Res. 15:
- âââ394.
- Matis K.A, Zouboulis A.I, Lazaridis .N.K.,
- Removal and recovery of metals from dilute
- solutions, applications of flotation techniques. 12,
- -196.
- Matis K.A, Zouboulis A.I., Lazaridis .N.K
- Blocher C., 2004. Application of flotation for the
- separation of metal-loaded zeolites, Chemosphere,
- , 65âââ72.
- Moore J.W, Ramamurthy S., Heavy Metals in
- Natural Waters: Applied Monitoring and Impact
- Assessment, SpringerâââVerlag, New York, 1984.
- Adriano D.C., Page A.L, Elseewi A.A, Chang
- A.C., 1980. Utilization and disposal of fly-ash and
- other coal residues in terrestrial ecosystems,
- Environ. Qual. J. 9, 333âââ344.
- Querol X., Moreno N., Umana J.C., Alastuey
- A., 2002. Synthesis of zeolites from coal fly ash: an
- overview, Int. J. Coal Geol. 50, 413âââ423.
- Hui K.S., Recycling of coal fly ash: synthetic
- zeolite 4A and MCM-41, Master thesis, The Hong
- Kong University of Science and Technology, 2004.
- Blanchard G., Maunaye M., Martin G., 1984.
- Removal of heavy-metals from waters by means of
- natural zeolites, Water Res. 18, 1501âââ1507.
- Malliou E., Loizidou M., Spyrellis N., 1994.
- Uptake of lead and cadmium by clinoptilolite, Sci.
- Total Environ. 149,139âââ144.
- Singh B., Alloway B.J., Bochereau F.J.M., 2000.
- Cadmium sorption behavior of natural and synthetic
- zeolites, Commun. Soil Sci. Plant Anal. 31, 2775âââ
- Querol X., Moreno N., Umana J.C., Juan R.,
- Hernandez S., 2002. Application of zeolitic material
- synthesised from fly ash to the decontamination of
- waste water and flue gas, J. Chem. Technol.
- Biotechnol. 77 292âââ298.
- Majdan M., Pikus S., Kowalska-Ternes M.,
- Equilibrium study of selected divalent delectron
- metals adsorption on A-type zeolite,
- Colloid Interface Sci. J. 262, 321âââ330.
- Namasivayam C., Yamuna R.T., 1999. Studies
- on chromium (III) removal from aqueous solution
- by adsorption onto biogas residual slurry and its
- application to tannery wastewater treatment, Water
- Air Soil Pollut. 113, 371âââ384.
- Covarrubias C., Arriagada R., Yanez J., Garcia
- R., 2005. Removal of chromium(III) from tannery
- effluents, using a system of packed columns of
- zeolite and activated carbon, J. Chem. Technol.
- Biotechnol. 80, 899âââ908.
- Subramanian K., Yadaiah P., 2001. Assessment
- of the impact of industrial effluents on water quality
- in Patancheru and environs, Medak district, Andhra
- Pradesh, India, Hydrogeol. J. 9: 297âââ312.
- Ouki J., Kavannagh K., 2009. the performance
- of natural zeolites (clinoptilolite and chabazite) on
- the treatment of mixed metal effluents (Pb2+, Cd2+,
- Cu2+, Zn2+, Cr3+,Ni2+ and Co2+ ).Env.J. 34,53-62.
- Ã Â Ãâ IBAN M., KLAÃ Â NJA M., 2003.
- Optimization of usage of wood sawdust as adsorbent
- of heavy metal ions from water.34:45-51.
- Bryant P. S., Petersen J. N., Lee J. M., Brouns
- T. M., 1992. adsorption of hexavalent chromium by
- red fir sawdust. Appl. Biochem. Biotech. j. 34-35:
- -788.
- Ajmal M., Khan A. H., Ahmad S., Ahmad A.,
- removal of chromium by sawdust .Water Res.
- , 3085-3091.
- Aljundi I. H., Jarrah N., 2008. Study of
- characteristics of activated carbon produced from
- Jordanian olive cake, Anal.J. 81, 33-36.
- Valix M., Cheung W. H., McKay G., 2004.
- Preparation of activated carbon using low
- temperature carbonisation and physical activation of
- high ash raw bagasse for acid dye adsorption.
- Chemosphere.56,493-501.
- Thonstad J., Fellner P., Haarberg G.M.,
- Aluminium Electrolysis, 2001.
- Grjotheim K., Kvande H., Introduction to
- Aluminium Electrolysis, Understanding the Hall-
- Heroult Process, 1993.
- Thonstad J., Fellner P., Haarberg G. M., Hiveà ¡
- J., Kvande H., Sterten A., Aluminium Electrolysis
- Fundamentals of the Hall-Heroult Process, 2001.
- Nordberg. G.F., Fowler .B.A, Nordberg, Friberg
- M. L., Handbook of Toxicology of Metals,
- European Environment Agency, Copenhagen, 2005.
- Rangsivek R., Jekel M. R., 2005. Removal of
- dissolved metals by zero-valent iron (ZVI): Kinetics,
- equilibria, processes and implications for stormwater
- runoff treatment, Wat. Res. 39, 4153-4163.
- Ã Â trkalj A., RaÃâenoviÃâ¡ A., Malina A., 2010.
- Nickel Adsorption onto carbon anode dust modified
- by Acetic Acid and kOH. Min and Metal.J
- .46(1),33-40.
- Zhuangdong Y., 2007. Study on the synthesis
- and catalyst oxidation properties of chitosan bound
- nickel(II) complexes. Chem. Ind T. 21 (5), 22âââ24.
- Kean T., Roth S., Thanou M., 2005.
- Trimethylated chitosans as non-viral gene delivery
- vectors: cytotoxicity and transfection efficiency. J
- Cont.R. 103 (3), 643âââ53.
- Varma A.J., Deshpande S.V., Kennedy J.F.,
- Metal complexation by chitosan and its
- derivatives. Carb. Poly. a rev. 55,77-93
- Guibal E., 2004. Interactions of metal ions with
- chitosan-based sorbents: A review. Sep and Pur
- Tech, 38, 43-74.
- Sewvandi G.A., Adikary S.U., 2011. Removal
- of heavy metals from wastewater using chitosan:
- Materials Scie.38, 30-35.
- Dungan R. S., Dees N. H., 2007. The
- characterization of total and leachable metals in
- foundry molding sands. Env.J. 90, 1âââ10.
- Jl S., Wan L., Fan Z., 2001. The toxic
- compounds and leaching characteristics of spent
- foundry sands. Water, Air, and Soil Pollution; 132,
- âââ364.
- Lee T., Park J., Lee J., 2004. Waste green
- sands as reactive media for the removal of zinc from
- water. Chemosphere; 56, 571âââ581.
- Glavas Z., Strkalj A., 2009. Waste metallurgical
- materials- potential adsorbents for removal Cr+6.
- Chemosphere. 56,507-512.
- Strkalj A., Jadranka M., Ankica R., 2009. Waste
- mould sand-potential low-cost sorbent for nickel
- andchromium ions from aqueous solution. Materials
- and Geoenvironment; 56(2), 118-125.
- Masri M.S., Friedman M., 1974. Effect of
- chemical modification of wool on metal ion binding.
- J. Appl. Polym. Sci. 18, 2367-2377.
- Orhan Y., Buyukgungor H. ,1993. The removal
- of heavy metals by using agricultural wastes. Water
- Sci. Technol.28(2),247-255.
- Alves M. M., Gonzalez Beca C.G., Guedes de
- Carvalho R., Castanheira J.M.,1993. Chromium
- removal in tannery wastewaters
- WaterRes.27(8),1333-1338.
- Teles de Vasconcelos L.A., Gonzalez Beca C.G.
- ,1993. Adsorption equilibria between pine bark and
- several ions in aqueous solution, 2. Cd(II), Cr(III)
- and H+. Eur. Water Pollut. Control 3(6),29-39.
- Teles de Vasconcelos L.A., Gonzalez Beca C.G.
- , 1994. Adsorption equilibria between pine bark and
- several ions in aqueous solution, 1. Pb(II). Eur.
- Water Pollut. Control 4(1), 41-51.
- Kumar U., Bandyopadhyay M., 2006. Sorption
- of cadmium from aqueous solution using retreated
- rice husk, Biores. Technol. 97, 104âââ109.
- Iqbal M., Saeed A., Akhtar N., 2002. Petiolar
- felt-seath of palm: A new biosorbent for the removal
- of heavy metals from contaminated water. Biores.
- Technol. 81, 151âââ153.
- Low K.S., Lee C.K., Liew S.C., 2000. Sorption
- of cadmium and lead from aqueous solution by spent
- grain. Proc. Biochem. J. 36: 59-64