Removal of Heavy Metal Ions from Polluted Waters by Using of Low Cost Adsorbents: Review
الموضوعات :M. Ghaedi 1 , N. Mosallanejad 2
1 - Department of Chemistry, Graduate student, Firuz Abad Branch, Islamic Azad University, Fars, Iran
2 - Department of Chemistry, Graduate student, Firuz Abad Branch, Islamic Azad University, Fars, Iran
الکلمات المفتاحية: Heavy metals, Adsorption, waste water, Low Cost Adsorbents,
ملخص المقالة :
Adsorption is a fundamental process in the physicochemical treatment of wastewaters which industries employ to reduce hazardous organic and inorganic wastes in effluents. In recent years the use of low-cost adsorbents has been widely investigated as a replacement for the currently costly methods of removing heavy metal ions from wastewater. It is well-known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In this study, the use of some of low cost adsorbents for the removal of heavy metals from wastewater has been reviewed.
- Bennett P.M., Jepson P.D., Law R.J., Jones
- B.R., Kuiken T., Baker J.R., Rogan E., Kirkwood
- J.K., 2001. Exposure to heavy metals and infectious
- disease mortality in harbour porpoises from England
- and Wales. Env. Pol. J. 112,33-40.
- Fujise Y., Honda K., Tatsukawa R., Mishima, S.,
- Tissue distribution of heavy metals in Dallâââ¢s
- porpoise in the northwestern Pacific. Mar. Pol. Bul.
- J. 19, 226-30.
- Honda K., Tatsukawa R., Itano K., Miyazaki N. ,
- Fujiyama T., 1983. Heavy metal concentrations in
- muscle, liver and kidney tissue of Striped dolphin
- Stenella coeruleoalba and their variations with body
- length, weight, age and sex. Agr and Biolog. Chem.
- J. 47, 1219-1228.
- Parsons E.C.M., 1999. Trace metal concentrations
- in the tissues of cetaceans from Hong Kongâââ¢s
- territorial waters. Env. Con. 26, 30-40.
- Piotrowski J.K., Coleman D.O., 1980.
- Environmental hazards of heavy metals: summary
- evaluation of lead, cadmium.and mercury . a general
- report. UNEP, Nairobi, 23,123-128.
- Quaterman J., 1986. Lead. In: Trace metals in
- human and animal nutrition. Academic Press,
- Florida. 12, 23-28.
- Huang C. P., Wu M. H., 1975. Chromium
- removal by carbon adsorption of the Water. Pol.
- Cont. Fed. J. 47, 2437-2445.
- Lokeshwari N., Joshi. K., 2009. Biosorption of
- Heavy Metals using Biomass. Envl. Res.J. 3, 29-35.
- Singanan M., Vinodhini S., Alemayehu A.,
- Phytoremediation of heavy metals from
- industrial waste waters by using indigenous
- biomaterials. Env. Pro. J. 26(5), 385-391.
- Chaiko D.J, Kopasz J.P., Ellison J.G., 1998. Use
- of Sol-Gel system for solid/liquid separation, Ind
- and Eng Chem Res. 37, 1071-1078.
- WellerM.G., 2000. Immunochromatographic
- techniques-a critical review, Anal. Chem. J. 366,
- -645.
- Ghorai S., Pant K.K., 2005. Equilibrium,
- kinetics and breakthrough studies for adsorption of
- fluoride on activated alumina. Pur. Tech .42, 265-
- Martone Pt, Estevez Jm., Lu F., Ruel K.,
- Denny Mw., Somerville C., Ralph J., 2009.
- Discovery of Lignin in Seaweed Reveals
- Convergent Evolution of Cell-Wall Architecture.
- Cur. bio .19 (2), 169âââ75.
- Sjöström E., Wood Chemistry: Fundamentals and
- Applications, 1993.
- Boerjan W., RalphJ., Baucher M., 2003. Lignin
- bios. Ann. Rev. Plant Biol. 54 (1), 519âââ549.
- Chabannes M., 2001. In situ analysis of lignins
- in transgenic tobacco reveals a differential impact of
- individual transformations on the spatial patterns of
- lignin deposition at the cellular and subcellular
- levels. Plant J. 28 (3), 271âââ282.
- Ralph et al., 2001. Elucidation of new structures
- in lignins of CAD- and COMT-deficient plants by
- NMR. Phytochem. J. 57 (6), 993âââ1003.
- Lagtah L. et al., 2005. use of lignin as an
- adsorbent and as a precursor of activated carbons
- (ACs) in order to remove Cd+2, Cu2+ and Zn2+ ions
- from aqueous solutions. Ing. Chem. J. 65, 234-266.
- Guo J. et al., 2009. Adsorption of metal ions on
- lignin. Plant. J. 32, 234-245.
- Carrott P. J. M, Ribeiro Carrott M. M. L., 2007.
- Use of low cost biosorbent as lignin for adsorption
- and purification waste water. Technol. J. 98, 2301-
- Srivastava S. K., Singh A. K., Sharma A., 1994.
- High uptake of Pb (II) and Zn (II) by using lignin
- extracted from black liquor. Environ. Technol. 15 ,
- -360.
- Managing Coal Combustion Residues in Mine,
- Committee on Mine Placement of Coal Combustion
- Wastes, National Research Council of the National
- Academies, 2006.
- American Coal Ash Association www.acaausa.
- org.
- Snellings R., Mertens G., Elsen J., 2012.
- Supplementary cementitious materials. Mineral and
- Geochem. Rev. 74, 211-278.
- Scott Allan N., Thomas Michael D. A., 2007.
- Evaluation of Fly Ash from Co-Combustion of Coal
- and Petroleum Coke for Use in Concrete. ACI.
- Materi .J . 1,62âââ70.
- Duxson P., Provis J.L., Lukey G.C., van
- Deventer J.S.J., 2007. The role of inorganic
- polymer technology in the development of 'Green
- concrete'". Cement and Concrete Research 37 (12):
- âââ1597.
- Panday K.K., Prasad .G. Singh V.N., 1985.
- Copper (II) removal from aqueous solutions by fly
- ash, Water Res. 19, 869âââ873.
- Viraraghavan, G., Rao A.K., 1991. Adsorption
- of cadmium and chromium from wastewater. Env.
- Sci. Health. J. 26 (5) 721âââ753.
- Kumar K.V, Ramamurthi V., Sivanesan S.,
- Modeling the mechanism involved during the
- sorption of methylne blue onto fly ash, Colloid
- Interface Sci. J. 284: 14âââ21.
- Weng C.H, Huang C.P., 1994. Treatment of
- metal industrial water by fly ash and cement
- fixation, Environ. Eng. Div. J. ASCE 120, 1470âââ
- Weng C.H., Huang C.P., 2004. Adsorption
- characteristics of Zn(II) from dilute aqueous solution
- by fly ash. Colloids and Surfaces A: Physicochem,
- Eng. Aspects 247, 137âââ143.
- Baya B. T., 2002. Comparative study of
- adsorption properties of Turkish fly ashes âââI. The
- case of nickel (II), copper (II) and zinc (II), Hazard.
- Mater. B J. 95:251âââ273.
- Heechan Cho., 2001. The possibility of the
- utilization of coal fly ash as a low cost
- adsorbent.Env J. 5,123-131.
- Julia A., 2006. the efficiency of fly ash in the
- removal of heavy metals (Cd and Cu).Env. J. 23, 14-
- Cadena F., Rizvi R., Peters. R. W., Feasibility
- studies for the removal of heavy metals from
- solution using tailored bentonite. In Hazardous and
- industrial Wastes, Proceedings of the Twenty âââ
- Second Mid-Atlantic Industrial Waste Conference,
- Drexel University, 1990.
- Johansson L., 1999. Blast furnace slag as
- phosphorus sorbentsâââcolumn studies. Sci. Total
- Environ.229, 89-97.
- Gruenberg B., Kern, J., 2001. Phosphorus
- retention capacity of iron-ore and blast furnace slag
- in subsurface flow constructed wetlands. WST, 44,
- -75.
- Kostura B., Kulveitová H., Leà ¡ko, J., 2005.
- Blast furnace slagsas sorbents of phosphate from
- water solutions. Water Res., 39, 1795-1802.
- Korkusuz E.A., Beklioßlu M., Demirer G.N.,
- Use of blast furnace granulated slag as a
- substrate in vertical flow reed beds: Field
- application. Bioresour. Technol., 98, 2089-2101.
- Ouki S.K, Kavannagh M., 1997. Performance of
- natural zeolites for the treatment of mixed metalcontaminated
- effluents, Waste Manage. Res. 15:
- âââ394.
- Matis K.A, Zouboulis A.I, Lazaridis .N.K.,
- Removal and recovery of metals from dilute
- solutions, applications of flotation techniques. 12,
- -196.
- Matis K.A, Zouboulis A.I., Lazaridis .N.K
- Blocher C., 2004. Application of flotation for the
- separation of metal-loaded zeolites, Chemosphere,
- , 65âââ72.
- Moore J.W, Ramamurthy S., Heavy Metals in
- Natural Waters: Applied Monitoring and Impact
- Assessment, SpringerâââVerlag, New York, 1984.
- Adriano D.C., Page A.L, Elseewi A.A, Chang
- A.C., 1980. Utilization and disposal of fly-ash and
- other coal residues in terrestrial ecosystems,
- Environ. Qual. J. 9, 333âââ344.
- Querol X., Moreno N., Umana J.C., Alastuey
- A., 2002. Synthesis of zeolites from coal fly ash: an
- overview, Int. J. Coal Geol. 50, 413âââ423.
- Hui K.S., Recycling of coal fly ash: synthetic
- zeolite 4A and MCM-41, Master thesis, The Hong
- Kong University of Science and Technology, 2004.
- Blanchard G., Maunaye M., Martin G., 1984.
- Removal of heavy-metals from waters by means of
- natural zeolites, Water Res. 18, 1501âââ1507.
- Malliou E., Loizidou M., Spyrellis N., 1994.
- Uptake of lead and cadmium by clinoptilolite, Sci.
- Total Environ. 149,139âââ144.
- Singh B., Alloway B.J., Bochereau F.J.M., 2000.
- Cadmium sorption behavior of natural and synthetic
- zeolites, Commun. Soil Sci. Plant Anal. 31, 2775âââ
- Querol X., Moreno N., Umana J.C., Juan R.,
- Hernandez S., 2002. Application of zeolitic material
- synthesised from fly ash to the decontamination of
- waste water and flue gas, J. Chem. Technol.
- Biotechnol. 77 292âââ298.
- Majdan M., Pikus S., Kowalska-Ternes M.,
- Equilibrium study of selected divalent delectron
- metals adsorption on A-type zeolite,
- Colloid Interface Sci. J. 262, 321âââ330.
- Namasivayam C., Yamuna R.T., 1999. Studies
- on chromium (III) removal from aqueous solution
- by adsorption onto biogas residual slurry and its
- application to tannery wastewater treatment, Water
- Air Soil Pollut. 113, 371âââ384.
- Covarrubias C., Arriagada R., Yanez J., Garcia
- R., 2005. Removal of chromium(III) from tannery
- effluents, using a system of packed columns of
- zeolite and activated carbon, J. Chem. Technol.
- Biotechnol. 80, 899âââ908.
- Subramanian K., Yadaiah P., 2001. Assessment
- of the impact of industrial effluents on water quality
- in Patancheru and environs, Medak district, Andhra
- Pradesh, India, Hydrogeol. J. 9: 297âââ312.
- Ouki J., Kavannagh K., 2009. the performance
- of natural zeolites (clinoptilolite and chabazite) on
- the treatment of mixed metal effluents (Pb2+, Cd2+,
- Cu2+, Zn2+, Cr3+,Ni2+ and Co2+ ).Env.J. 34,53-62.
- Ã Â Ãâ IBAN M., KLAÃ Â NJA M., 2003.
- Optimization of usage of wood sawdust as adsorbent
- of heavy metal ions from water.34:45-51.
- Bryant P. S., Petersen J. N., Lee J. M., Brouns
- T. M., 1992. adsorption of hexavalent chromium by
- red fir sawdust. Appl. Biochem. Biotech. j. 34-35:
- -788.
- Ajmal M., Khan A. H., Ahmad S., Ahmad A.,
- removal of chromium by sawdust .Water Res.
- , 3085-3091.
- Aljundi I. H., Jarrah N., 2008. Study of
- characteristics of activated carbon produced from
- Jordanian olive cake, Anal.J. 81, 33-36.
- Valix M., Cheung W. H., McKay G., 2004.
- Preparation of activated carbon using low
- temperature carbonisation and physical activation of
- high ash raw bagasse for acid dye adsorption.
- Chemosphere.56,493-501.
- Thonstad J., Fellner P., Haarberg G.M.,
- Aluminium Electrolysis, 2001.
- Grjotheim K., Kvande H., Introduction to
- Aluminium Electrolysis, Understanding the Hall-
- Heroult Process, 1993.
- Thonstad J., Fellner P., Haarberg G. M., Hiveà ¡
- J., Kvande H., Sterten A., Aluminium Electrolysis
- Fundamentals of the Hall-Heroult Process, 2001.
- Nordberg. G.F., Fowler .B.A, Nordberg, Friberg
- M. L., Handbook of Toxicology of Metals,
- European Environment Agency, Copenhagen, 2005.
- Rangsivek R., Jekel M. R., 2005. Removal of
- dissolved metals by zero-valent iron (ZVI): Kinetics,
- equilibria, processes and implications for stormwater
- runoff treatment, Wat. Res. 39, 4153-4163.
- Ã Â trkalj A., RaÃâenoviÃâ¡ A., Malina A., 2010.
- Nickel Adsorption onto carbon anode dust modified
- by Acetic Acid and kOH. Min and Metal.J
- .46(1),33-40.
- Zhuangdong Y., 2007. Study on the synthesis
- and catalyst oxidation properties of chitosan bound
- nickel(II) complexes. Chem. Ind T. 21 (5), 22âââ24.
- Kean T., Roth S., Thanou M., 2005.
- Trimethylated chitosans as non-viral gene delivery
- vectors: cytotoxicity and transfection efficiency. J
- Cont.R. 103 (3), 643âââ53.
- Varma A.J., Deshpande S.V., Kennedy J.F.,
- Metal complexation by chitosan and its
- derivatives. Carb. Poly. a rev. 55,77-93
- Guibal E., 2004. Interactions of metal ions with
- chitosan-based sorbents: A review. Sep and Pur
- Tech, 38, 43-74.
- Sewvandi G.A., Adikary S.U., 2011. Removal
- of heavy metals from wastewater using chitosan:
- Materials Scie.38, 30-35.
- Dungan R. S., Dees N. H., 2007. The
- characterization of total and leachable metals in
- foundry molding sands. Env.J. 90, 1âââ10.
- Jl S., Wan L., Fan Z., 2001. The toxic
- compounds and leaching characteristics of spent
- foundry sands. Water, Air, and Soil Pollution; 132,
- âââ364.
- Lee T., Park J., Lee J., 2004. Waste green
- sands as reactive media for the removal of zinc from
- water. Chemosphere; 56, 571âââ581.
- Glavas Z., Strkalj A., 2009. Waste metallurgical
- materials- potential adsorbents for removal Cr+6.
- Chemosphere. 56,507-512.
- Strkalj A., Jadranka M., Ankica R., 2009. Waste
- mould sand-potential low-cost sorbent for nickel
- andchromium ions from aqueous solution. Materials
- and Geoenvironment; 56(2), 118-125.
- Masri M.S., Friedman M., 1974. Effect of
- chemical modification of wool on metal ion binding.
- J. Appl. Polym. Sci. 18, 2367-2377.
- Orhan Y., Buyukgungor H. ,1993. The removal
- of heavy metals by using agricultural wastes. Water
- Sci. Technol.28(2),247-255.
- Alves M. M., Gonzalez Beca C.G., Guedes de
- Carvalho R., Castanheira J.M.,1993. Chromium
- removal in tannery wastewaters
- WaterRes.27(8),1333-1338.
- Teles de Vasconcelos L.A., Gonzalez Beca C.G.
- ,1993. Adsorption equilibria between pine bark and
- several ions in aqueous solution, 2. Cd(II), Cr(III)
- and H+. Eur. Water Pollut. Control 3(6),29-39.
- Teles de Vasconcelos L.A., Gonzalez Beca C.G.
- , 1994. Adsorption equilibria between pine bark and
- several ions in aqueous solution, 1. Pb(II). Eur.
- Water Pollut. Control 4(1), 41-51.
- Kumar U., Bandyopadhyay M., 2006. Sorption
- of cadmium from aqueous solution using retreated
- rice husk, Biores. Technol. 97, 104âââ109.
- Iqbal M., Saeed A., Akhtar N., 2002. Petiolar
- felt-seath of palm: A new biosorbent for the removal
- of heavy metals from contaminated water. Biores.
- Technol. 81, 151âââ153.
- Low K.S., Lee C.K., Liew S.C., 2000. Sorption
- of cadmium and lead from aqueous solution by spent
- grain. Proc. Biochem. J. 36: 59-64