The effect of mycorrhiza and humic acid on chlorophyll content and grain filling components of wheat (Triticum aestivum L.) in various irrigation levels
Subject Areas : Journal of Plant Ecophysiologyshahram shahmarzadeh 1 , RAOUF SEYED SHARIFI 2 , mohammad sedghi 3
1 - گروه مهندسی تولید و ژنتیک گیاهی دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی
2 - university of mohaghegh ardabili
3 - - گروه مهندسی تولید و ژنتیک گیاهی دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی
Keywords: Photosynthetic pigments, Bio fertilizers, Anthocyanin, Water limitation,
Abstract :
In order to study the effect of mycorrhiza and humic acid on yield, chlorophyll content and grain filling components of wheat (Triticum aestivum L.) in various irrigation levels, a factorial experiment was conducted based on randomized complete block design with three replications in research farm of faculty of Agriculture and Natural Resources, University of Mohagheghi Ardabil in 2018-2019. Factors experiment were included irrigation at three levels (full irrigation as control, irrigation withholding at 50% of heading and irrigation withholding at 50% of booting stage), and application of mycorrhiza and humic acid at eight levels (Glomus intraradices, G.moseae, both application G. intraradices and G.moseae, humic acid, humic acid with G. intraradices, humic acid and G.moseae, humic acid with G.intraradices and G.moseae, control (without humic acid, G.moseae and G. intraradices). Means comparison showed that both application G.intraradices and G.moseae with humic acid under full irrigation increased anthocyanin content (71%), chlorophyll content a, b and total chlorophyll (10.8, 12 and 17%), grain filling rate (18%), grain filling period and effective grain filling period (7.6 and 8% respectively), ear length (48%), number of grain per ear (68%) and grain yield (48%) in comparison with irrigation withholding at 50% of booting stage and no application of mycorrhiza and humic. It seems that application of mycorrhiza and humic acid can increase grain yield of wheat under severe water limitation due to improving chlorophyll content and grain filling components.
جهان م.، ر. سهرابی ، ف. دوایی و م.ب. امیری، 1392. تأثیر جذب سوپر جاذب هیدروژن بر محلول پاشی خاک و اسید هیومیک بر روی برخی ویژگیهای زراعی لوبیا (Phaseolus vulgaris L..) در شرایط مشهد. مجله کشاورزی اکولوژی، جلد 3 شماره 2: 90-71.
حیدری سیاه خلکی، م.ص.، ر. سید شریفی، و م. صدقی، 1391 .تأثیر تلقیح بذر با باکتریهای محرک رشد (PGPR) و زمان مصرف کود نیتروژن بر عملکرد، سرعت و طول دوره پر شدن دانه گندم. مجله علوم و تکنولوژی بذر. جلد 2 شماره 3 : 78-64.
-خیریزاده آروق، ی.، ر، سیدشریفی.، م، صدقی و م، برمکی. 1396. تأثیر تعدیل کنندههای تنش کمبود آب (کودهای زیستی و نانواکسید روی) بر صفات مؤثر بر انباشت مواد در دانه تریتیکاله در شرایط مختلف قطع آبیاری. مجله اکوفیزیولوژی گیاهی. سال 9، شماره 28، صفحات 46-31.
خورشیدی بنام، م.ب. و باقری، م. 1392. افزایش تحمل گیاهچههای ذرت به تغییرات دمایی از طریق سه گونه مایکوریزاا. مجله دانش کشاورزی و تولید پایدار. جلد 3 صفحات 200-187.
محسنی، ع.ر.، ر، سید شریفی.، و س، خماری. 1400. اثر قطع آبیاری در مراحل زایشی و کاربرد پوترسین و کودهای زیستی بر دوره پر شدن دانه، محتوای کلروفیل و عملکرد گندم. پژوهشهای زراعی ایران. جلد 19 شماره 2 صفحات 167-153.
سید شریفی، ر، و ع، نامور. 1394. کودهای زیستی در زراعت. انتشارات دانشگاه محقق اردبیلی. 282 صفحه.
سید شریفی، ر، و قلی نژاد، ا. 1400. ارزیابی صفات زراعی و مورفوفیزیولوژیکی گیاهان زراعی. انتشارات دانشگاه محقق اردبیلی. 400 صفحه.
داودی فرد، م. و حبیبی، د. 1390. اثرات تنش شوری روی پایداری غشا، محتوای کلروفیل و اجزای عملکرد گندم تلقیح شده با باکتریهای محرک رشد و اسید هیومیک. مجله زراعت و اصلاح نباتات. 23 : 16-1.
Abd El-Razek, E., A.S.E. Abd-Allah and M.M.S. Saleh, 2012. Yield and fruit quality of Florida prince peach trees as affected by foliar and soil applications of humic acid. J. Appl Sci Res. 8 (12): 5724-5729.
Abdel Mawgoud, A.M.R., N.H.M, El Greadly., Y.I. Helmy, and S.M.Singer. 2007. Responses of tomato plants to different rates of humic based fertilizer and NPK fertilization. J. Appl Sci Res. 3(2): 169-174.
Abo-ghalia, H.H. and A.A. Khalafallah. 2008. Responses of wheat plants associated with arbuscular mycorrhizal fungi to short-term water stress followed by recovery at three growth stages. J. Applied Sci Resh. 4: 570-580.
Abou-Aly, H.E. and M.A.Mady. 2009. Complemented effect of humic acid and bio-fertilizers on wheat (Triticum aestivum L.) productivity. Annals of Agricul Sci. 47(1): 1-12.
Aggag, A.M., A.M, Alzoheiry, and A.E. Abdallah. 2015. Effect of kaolin and fulvic acid anti-transpirants on tomato plants grown under different water regimes. Alexandria Sci Exchange J. 36, 2-15.
Al-Karaki,G.N., B.McMichael, J.Zak,2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14:263-269.
Arnon, A.N., 1967. Method of extraction of chlorophyll in the plants. Agron J. 23: 112-121.
Asrar, A.A., G.M, Abdel-Fattah, and K.M, Elhindi. 2012. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under wellwatered and water stress conditions using arbuscular mycorrhizal fungi. Photosynthetica. 50 (2): 305–316.
Asri, F.O., E.L. Demirtas, and N.Ari. 2015. Changes in fruit yield, quality and nutrient concentrations in response to soil humic acid applications in processing tomato. Bulgarian J. Agric Sci, 21(3), 585-591.
Dodd, I.C, and F. Perez-Alfocea,. 2012. Microbial amelioration of crop salinity stress. J. Exp Bot. 63 (9): 3415-3428.
Eftekhari, M, M.Alizadeh, K. Mashayekhi, H. Asghari and B. Kamkar, 2010. Integration of arbuscular mycorrhizal fungi to grape Vine (Vitis vinifera L.) in nursery stage. J. Adv Laboratory Res. Biol. 1(1): 102-111.
Ellis R.H. and C. Pieta-Filho, 1992. The development of seed quality spring and winter cultivars of barley and wheat. Seed Sci Res, 2: 19-25.
Gianinazzi, S., H, Schuepp, JM, Barea, and K.Haselwandter. 2001. Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhauser, Basel. ISBN: 376436858. Also in: Mycorrhiza. 13: 53-54. Lovato, P. Book review.
Hafsi,M., Akhter,J. and P.Monneveux,2007.Leaf senescence and carbon isotope discrimination in durum wheat (Triticum durum Desf.) under severe drought conditions. Cereal Res Communications, 35: 71-80.
James, B., D.Rodel, U.Lorettu, E.Reynaldo, and H.Tariq. 2008. Effect of vesicular Arboscular mycorrhiza (VAM) fungi inoculation on coppicing ability and drought resistance of Senna Spectabilis. Pak J. Bot.
40 (5): 2217-2224.
Jiao, J., K.Chen, and C.Yi. 2010. Effects of soil moisture content on growth, physiological and biochemical characteristics of Jatropha curcas L. Acta Ecol Sinica, 30, 4460-4466
Jose,A., and A.Martin. 1988. Effect of humic acids on the mineralization of low concentration of organic compounds. Soil Biol. Bioch 20(2): 185-191.
Kaya, M., M. Atak., C.Y. Ciftci, and S.Unver, 2005. Effect of zinc and humic asid applications on yield and some yield components of bread wheat (Triticum aestivum L.). J. Graduate School and Natural Appl Sci, 9 (3): 315-321.
Khattab, M. M. and A.E, Shaban, 2014. Effect of humic acid and amino acids on pomegranate trees under deficit irrigation. II: fruit quality. American-Eurasian Journal of Agricul. Env Sci, 14 (9): 941-948.
Lee, J. and C.F, Scagel. 2009. Chicoric acid found in basil (Ocimum basilicum L.) leaves. J. Food Chem. 115: 650-656.
Luigi, C., F. Rizza, B. Farnaz, E. Mazzucotelli, A.M. Mastrangelo, E. Francia, C.T. Mare, T. Alessandro and M.A. Stanca, 2008. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res, 105: 1- 14.
Manal, F.M., A.T.Thalooth., A.G.Amal., H.M. Magda, and T.A, Elewa. 2016.Evaluation of the effect of chemical fertilizer and humic acid on yield and yield components of wheat plants (Triticum aestivum) grown under newly reclaimed sandy soil. Intern J. Chem Tech Res, 9(8): 154-161.
Monakhova, O.F., and I.I.Chernyadev. 2002. Protective role of kartolin-4 in wheat plants exposed to soil drought. Applied Bioch. Microb, 38(4): 373-380.
Moucheshi, A., M.T.Heidari, and B. Assad,. 2012. Alleviation of drought stress effects on wheat using arbuscular mycorrhizal symbiosis. Intern J. Agricul Sci. 2: 35–47.
Moustafa, M.A., L.B. Boersma and W.E. Kyonstad, 1996. Response of four spring wheat cultivars to drought stress. Crop Sci, 36: 982-986.
Oelke, E.A., E.S. Oplinger, T.M. Teynor, D.H. Putnam, J.D. Doll, K.A. Kelling, B.R. Durgan and D.M. Noetzel, 2004. Safflower. Altern Field Crops Manual, 1-8.
Orabi, S.A., S.R. Salman and M.A. Shalaby, 2010. Increasing resistance to oxidative damage in cucumber (Cucumis sativus L.) plants by exogenous application of salicylic acid and paclobutrazol. J. Agricul Sci, 6(3), 252-259.
Peng, Z., C.Han., L.Yuan., K.Zhang., H.Huang, and C. Ren. 2011. Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. J. Integ Plant Biol, 53: 632-640.
Ronanini, D., R.Savin and A.J. Hal, 2004. Dynamic of fruit growth and oil quality of sunflower (Helianthus annuus L.) exposed to brief interval of high temperature during grain filling. Field Crop Res, 83: 79-90.
Savin, R., and M.E.Nicolas, , 1999. Effects of timing of heat stress and drought on growth and quality of barley grains. Aust J. Agricul Res 50 (3) 357 – 364.
Tang, M., H. Chen, J.C. Huang, and Z.Q. Tian, 2009. Arbuscular mycorrhiza fungi effects on the growth and physiology of (Zea mays L.) seedlings under diesel stress. Soil Biol Bioch, 41: 936–940.
Theunissen, J.P., Ndakidemi, A. and C.P, Laubscher. 2010. Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. International J. Phys Sci, 5 (13): 1964- 1973.
Tsuno, Y., T. Yamaguchi and J.Nakano. 1994. Potential dry matter production and grain filling process of rice plant from the viewpoint of source-sink relationships and the role of root respiration in its relationship. Agron J, 47:1-10.
Turk, M.A., T.A.Assaf, K.M, Hameed, and A.M, Al-Tawaha. 2006. Effect of soil amendment with olive mill by products under soil solarization on growth and productivity of faba bean and their symbiosis with mycorrhizal. World J. Agricul Sci. 2(1): 1817-3047.
Wagner, G.J. 1979. Content and vacuole/extra vacuole distribution of neutral sugars free amino acids, and anthocyanins in protoplast. Plant Physiol, 64: 88-93
Wang, M., P.Christie, Z.Xiao, P.Wang, J.Lio, and R.Xia. 2008. Arbuscular mycorrhizal enhancement of iron concentration by Poncirus trifoliata L. Raf and Citrus reticulate Blanco grown on sand medium under different pH. Biol. Fert of Soils. 45:65-72.
Wang, Z. M., A.L. Wei, and D.M. Zheng, 2001. Photosynthetic characteristic of non leaf organs of winter wheat cultivar differing in ear type and their relationship with grain mass per ear. Photosynthetica, 39: 239-244.
Yang, G., N.Liu, W.Lu, S.Wang, H.Kan, Y.Zhang, L.Xu, and Y, Chen. 2014. The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. Ecology. 102:1072-1082.
Yousefi,A.A., K.Khavazi, A. A. Moezi, F. Rejali and H.Nadian, 2011. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. J. World Appl Sci. 15 (9): 1310-1318.
Yuan, T., J.Wang., X.Sun., J.Yan., Z.Wang, and J.Niu. 2017. Effect of combined application of humic acid and nitrogen fertilizer on nitrogen uptake, utilization and yield of winter wheat. Chinese J. Eco-Agriculture. 3: 74-82.
_||_