Effect of lead and putresine interactions on cress (Lipidium sativum) seedling physiological and biochemical factors
Subject Areas : Journal of Plant EcophysiologyFatemeh Hasanpournezhad 1 , Monireh Ranjbar 2
1 - دانشجوی کارشناسی ارشد فیزیولوژی گیاهی،دانشگاه آزاد اسلامی واحد فلاورجان، اصفهان،
2 - استادیارگروه زیست شناسی، دانشگاه آزاد اسلامی واحد فلاورجان، اصفهان، ایران
Keywords: Proline, Lead, Lepidium sativum, Antioxidant enzymes, putrescine,
Abstract :
In the present study, the effects of lead and putrescine on Lepidium sativum plant were examined. A factorial experiment was conducted in a completely randomized design with four replications. Lead nitrate at concentrations of 0, 125, 250 and 1000 micro molar and putresine at 0 and 1 mM was used. Lead and putresine increased plant fresh weights compared to lead treatment of same concentration and at a concentration of 500 micromolar fresh weight was10 gr. There was no significant difference between dry weights of treated plants and control. Lead treatment increased polyphenol oxidase (0/8 micromoles per minute per gram fresh weight in 1000 micromolar) and catalase (0/053 micromoles per minute per gram fresh weight in 1000 micromolar) activities. The use of putrescine and lead increased the polyphenol oxidase enzyme activity (0/99 micromoles per minute per gram fresh weight in 125 micromolar) compared to lead treatment of same concentration. The combined use of putresine and lead reduced the amount of proline except at 250 micromolar of lead compared to plants treated in the same concentration of lead. Treatments of lead at concentrations of 125, 250 and 500 micromolar and putrescine, were reduced the percent of inhibition compared to the treatment of lead in the same concentration. Inhibitory percentage was increased on 1000 micromolar of lead. The total phenols were not significant difference under the lead and putrescine treatments. In Lepidium sativum under lead stress activated polyphenol oxidase, Proline increasese. Useing putrescine has controlled production of proline by reduction the stress effects
پروین، پ. و م. خضری. 1394. بررسی اثر محلول پاشی پوترسین بر افزایش تحمل در نهال های گردوی ایرانی (Juglans regia L.) به تنش خشکی، علوم باغبانی ایران، جلد46، شماره1: 109- 99.
حاجی بلند، ر.و ن. ابراهیمی. 1390. تاثیر پلی آمین های اگزوژن بر رشد، فتوسنتز و متابولیسم فنل ها در گیاه توتون تحت تنش شوری. مجله زیست شناسی گیاهی، جلد 3، شماره8: 26- 13.
خداوردی لو، ح.، م. همایی، ع. لیاقت و س. میر نیا. 1386. ارزیابی کمی امکان پالایش سبز خاک های آلوده به سرب به وسیله شاهی(Barbarea verna). علوم کشاورزی. جلد 13، شماره2: 370-357.
فرحناکی، ع.، ح. عسگری و م. بختیاری. 1390. بررسی برخی خواص رئولوژیکی هیدروکلوئید دانه گیاه شاهی(Lepidium sativum). مجله مهندسی بیوسیستمی ایران. جلد 1، شماره42: 120-113.
مقیم، س.،ر. عمو آقایی و ب. شارقی. 1389. نقش حفاظتی پلی آمینها در برابر شوک گرمایی در رشد دانه رستهای سویا زیست شناسی گیاهی ایران، جلد 2، شماره4: 40-31.
نوح پیشه، ز. و خ. منوچهری کلانتری. 1390. اثرات کاربرد متقابل اسپرمیدین و تنش شوری در گیاه فلفل، مجله زیست شناسی ایران، جلد 24، شماره6: 857-848.
وحدتی، م. م. اقدسی و ح. ر. صادقی پور. 1389.برهمکنش ترهالوز و اسید آسکوربیک در رشد گیاهچه های آرابیدوپسیس. مجله پژوهش های تولید گیاهی. جلد17، شماره4: 48-27.
Atiya, A. M, E. Poortvliet, R. Stromberg, and A. Yngve. 2011. Polyamines in foods: development of a food database. Food Nutr. Res. 14 (55): 1-15.
Ayas, F.A and A.C. Kadioglu. 1997. Effect of heavy metal (Zn, Cd, Cu, Ni and Mg) on the soluble protein bands of germination lens esculent L. Seeds. Turk. J. Bot. 2(21): 85-94.
Bates, L. S. R. P., Waldren and I .D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39: 205-207.
Beladi, M., D. Habibi, A. Kashani, F. Pakneja and T. Nooralvandi. 2011. Phytoremediation of lead and copper by sainfoin (Onobrychis vicifolia): Role of antioxidant enzymes and biochemical biomarkers. American-Eurasian J. Agri. & Envir. Sci. 10 (3): 440-449.
Bors, W., C. Langebartels, C.Michel and H.Sandermann, 1989. Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28: 1589-95.
Bouchereau A, A .Aziz, F. Larher and J. Martin-Tanguy. 1999 Polyamines and environmental challenges: recent development, Plant Sci 140: 103-125.
Cakmak, I. and W. Horst. 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tip of soybean (Glysin max). Plant Physiol. 83:463-468.
Candan, F., J. M. Unlu, B.Tepe, D. Daferera, M. Polissiou, A. H. Sokmen, A. Akpulat. 2007..Antioxidant and antimicrobial activity of the essential oil and methanol extracts of achillea millefolium subsp. Millefolium Afa. (Asteraceae) Ethnophama 87: 215-220.
Costa, G. and L. Morel. 1994. Water relation gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol. and Bioch. 32: 561-57.
Del Duca, S. and G. Serafini-FracassiniCai. 2014. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front. Plant Sci. 5(120): 1-17.
Eick, M. J., J. D. Peak, P. V. Brad and J. D. Pesek. 1999. Kinetics of lead absorption/desorption on goethite: residence time effect. Soil Sci. 164: 28-39.
Folgado, R., B. Panis, K. Sergeant, J. Renaut, R. Swennen and J. Hausaman. 2013. Differential Protein Expression in Response to Abiotic Stress in Two Potato Species: Solanum commersonii Dun and Solanum tuberosum L. Inter. J. Mol. Sci. 14(3): 4912- 4933- --Fornazier, R. F., R. R. Ferreira, G. J. G. Pereira, S. M. G. Molina, and R. J. Smith. 2002. Cadmium stress in sugar cane callus cultures: effect on antioxidant enzymes. Plant Cell Tissu. and Org. Cultu. 71: 125-131.
Gad, N. 2012. Physiological and chemical response of groundnut (Arachis hypogaea) to cobalt nutrition. World Appl. Sci. J. 20: 327–335.
Georgiva V. and C. Tasev. 1997. Growth, yield, Lead, Zinc and cadmium content of radish, pea and pepper plants as influenced by level of single and multiple contamination of soil. Bulg. J. Plant Physiol. 23(12): 12-23.
Groppa, M. D., M. L. Tomaro and M.P. Benavides. 2001. Polyamines as protectors against cadmium or copper induced oxidative damage in sunflower leaf discs. Plant Sci. 161: 481-488.
Hajara, E.W. I., A. Z. Bin Sulaiman and A. M. Mimi Sakinah. 2014 .Assessment of heavy metals tolerance in leaves, stems and flowers of Stevia rebaudiana Plant. Procedia Envir. Sci. 20: 386-393.
Huang J. W. and S. D. Cunningham. 1996. Lead phytoextraction: species variation in lead uptake and translocation. New Phytol. 134: 75–84.
Jiménez-Bremont, J. F., M. Marina, M. D. L. L. Gerrero-gonzález, F. Rossi, D. Sánchez Rangel and M. Rodríguez-Kessler. 2014. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front. in Plant Sci. 5(95): 1-14.
John, R., P. Ahmad, K. Gadgil and S. Sharma. 2009. Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Inter. J. Plant Prod. 3(3): 65-76.
Kar, M. and D. Mishra. 1976. Catalase, Peroxidase, and Polyphenoloxidase activities during rice leaf senescence Plant Physiol. 57: 315-319.
Kiyosue, T. Y., Yoshiba, K. Yamaguchi-Shinozaki and K. Shinozaki. 1996. Nuclear gene encoding mitochondrial peroline dehydrogenase, an enzyme involved in peroline metabolism, is upregulated by peroline but down regulated by dehydration in Arabidopsis. Plant cell. 8: 1323-1335.
Kopyra, M. and E.A. Gwzdz. 2003. Nitric oxidestimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol. and Bioch. 41: 1011-1017.
Kubis J. 2005. The effect of exogenous spermidine on superoxide dismutase activity, H2O2 and superoxide radical level in barley leaves under water deficit conditions. Acta Physiol. Plant, 27: 289-95.
Kumaran, A. and R. J. Karunakaran. 2006. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 97: 109-114.
Larbi, A., F. Moral, and A. Abadia. 2003. Effects of Cd and Pb in sugar beet plants grown in nutrient solution: induced Fe deficiency and growth inhibition. Funct. plant Biol. 20(12): 1453-1464.
Mobin, M. and N.A. Khan. 2007. Photosynthetic activity pigment composition and antioxidative response of two mustard cultivars differing in photosynthetic capacity subjected to cadmium stress. J. Plant Physiol. 164: 601-610.
Muret, K., K. Sevgi, K. Sengul, U. Esra, B.,Cemalettin and V. Fedra. 2007 Biological activities, chemical composition of three honeys of different types from Anatolia Food Chem 100(2): 526-534.
Nadkarni, K. M. 1954. Lepidium sativum Linn. In the Indian materia with ayurvedic, unani and home remedies, 3rd ed. Bombay, India: Popular Prakashan. 736-737.
Nalilni, P. and P. S. Chandra. 2002. Effect of heavy metals Co+2, Ni+2 on growth and metabolism of cabbage. Plant Sci., 163: 753-758.
Nooman, A., F. Khala, K. Aashok, A. Shaky, A. O. Atif and H. F. Zahael-agbar. 2008. Antioxidant activity of some common Plant. Turk. J. Biol. 32: 51- 55.
Prassad, M.N.N. 1997. Trace metals, in: MNV prassad (ed) plant ecophysiology, wiley, New York, PP: 207-249.
Qiao, X., Z. Zheng, L. Zhang, J. Wang, G. Shi and X. Xu. 2015. Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L.: Subcellular distribution, polyamines and proline Chemosphere 120: 179-187.
Saleh, A. A. H. 2001. Effect of Cd and Pb on growth, certain antioxidant enzymes activity, protein profile and accumulation of Cd, Pb and Fe in Raphanus sativus and Eruca sativa seedlings Egyptian. J. Biol. 3: 131-139.
Serafini-Fracassini D., S. Del Duca, S. Beninati. 1995. Plant transglutaminase. Phytochemistry, 40: 355-65.
Schutzendubel, A. and A. Polle. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 372(53): 1351-1365.
Sfakianaki M., L. Sfichi and K. Kotzabasis. 2006. The involvement of LHCII-associated polyamines in the response of the photosynthetic apparatus to low temperature. J. Photochem. and Photobiol B: Biol. 84: 181-188.
Sgherri و C, E. Cosi and F. Navari-izzo. 2003. Phenol and antioxidative of Raphanus sativus grown in copper excess. Physiol. Plant. 21: 118-126.
Shakirova, A. R., D. R. Fatkhutdinova, M. V. Benzrukova and F. M. Shakirova. 2003. Salicylic acid prevents the damaging action of stress factors on wheat plants. Plant Physiol.69: 314- 319.
Sharma, P. and R. S. Dubey. 2005. Lead toxicity in plant. Braz. J. Plant Physiol. 17(1): 35-52.
Shimada, K., K. Fujikawa, K.Yahara and T. Nakamura. 1992. Antioxidative properties of xanthin on autoxidation of soybean oil in cyclodextrin emulsion. Agri. and Food Chem. 40: 945-948.
Singh, R. P., K. N. Murthy and G. K. Jayaprakasha. 2002. Studies on the antioxidant activity of Pomegranate peel and seed extracts using in vitro models. J. Agri. and Food Chem. 50: 81-86.
Tadolini, B. 1988. Polyamine inhibition of lipid peroxidation: the influence of polyamines in iron oxidation in the presence of compound mimicking phospholipid polar head. Biochem J. 249: 33-36.
Takahashi, T. and J. Kakehi. 2010. Polyamines: ubiquitous polyamins with unique roles in growth and stress responses. Annl. Bot. 105(1): 1-6.
Verma, S. and R.S. Dubey. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 164: 645-655.
Yadav, S.K. 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African J Bot. 76(2): 167-179.
Yiu, J. C, L.D. Juang, D. Y. T. Fang, C. W. Liu and S. J. Wu. 2009. Exogenous putrescine reduces flooding-induced oxidative damage by increasing the antioxidant properties of Welsh onion. Sci. Hort. 120: 306–314.
_||_