References:
[1] G.H. Golub, H.A. van der Vorst, Eigenvalue computation in the 20th century, J. Comput. Appl. Math., 123 (2000), pp. 35-65.
[2] N. Papathanasiou, P. Psarrakos, On condition numbers of polynomial eigenvalue problems, Appl. Math. Comput., 4 (2010), pp. 1194-205.
[3] J.E. Roman, M. Kammerer, F. Merz and F. Jenko, Fast eigenvalue calculations in a massively parallel plasma turbulence code, Parallel Computing, 5-6 (2010), pp. 339-58.
[4] D.S. Watkins, Understanding the QR Algorithm, SIAM Review, Vol. 24, No. 4. (Oct., 1982), pp. 427-440, Jstor.
[5] F. Gantmacher, The Theory of Matrices, Vols. I and II, Chelsea, New York, 1959.
[6] P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, Oxford, UK, 1969.
[7] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, London, 1985.
[8] A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell Publishing Company, New York, 1964.
[9] Chen Gongning, Matrix Theory with Applications ,Higher Education Publishing House ,Beijing, 1990. (in Chinese)
[10] Zhang Xian and Gu Dunhe, A note on A. Brauer's theorem, Linear Algebra Appl., 196 (1994) pp. 163-174.
[11] A. Brauer, Limits for the characteristic roots of a matrix IV, Duke Math. J., 19 (1952) pp. 75-91.
[12] Tam Bit-shun,Yang Shangjun and Zhang Xiaodong, Invertibility of irreducible matrices, Linear Algebra Appl., 259 (1996) pp. 39-70.
[13] G. Bennet, V. Goodman, and C. M. Newman, Norm of random matrices, Pac. J. Math., 59 (1975) pp. 359-365.
[14] B. S. Kashin, On the mean value of certain function connected with the convergence of orthogonal series, Anal. Math., 4 (1978) pp. 27-35.
[15] B. S. Kashin, On properties of random matrices associated with unconditional convergence almost everywhere, Dokl. Akad. Nauk SSSR, 254 (1980) pp. 1322-1325.
[16] R. M. Megrabian, On a characteristic of random matrices connected with unconditional convergence almost everywhere, Anal. Math. 14 (1988) pp. 37-47.
[17] Y. Q. Yin, Z. D. Bai and P. R. Krishnaiah, On limit of the largest eigenvalue of the large dimensional sample covariance matrix, Center for Multivariate Analysis, Teclm. Report No. 84-44, University of Pittsburgh, Pittsburgh, PA. (1984).
[18] Z. D. Bai and Y. Q. Yin, Necessary and sucient conditions for almost sure convergence of the largest eigenvalue of Wigner matrix, Center for Multivariate Analysis, Techn. Report No. 87-05, University of Pittsburgh, Pittsburgh, PA (1987).
[19] S. Geman, A limit theorem for the norm of random matrices, Ann. Probab., 8, No. 2 (1980) pp. 252-261.
[20] K. W. Wachter, The strong limits of random matrix spectra for sample matrices of independent elements, Ann. Probab., 6, No. 1 (1978) pp. 1-18.
[21] V. L. Girko, Limit theorems for the sums of distribution functions of eigenvalues of random symmetric matrices, Ukr. Mat. Zh., 40, No. 1 (1989) pp. 23-29.
[22] V. L. Girko,Limit theorems for the distribution of the eigenvalues of random symmetric matrices, Teor. Veroyatn. Mat. Stat., 41 (1989) pp. 23-29.
[23] V. L. Girko, The Spectral Theory of Random Matrices [in Russian], Nauka, Moscow (1988).
[24] V. L. Girko, Limit theorems for the maximal and minimal eigenvalues of random symmetric matrices, Teor. Veroyatn. Primen., 35, No. 4 (1990) pp. 677-690.
[25] L. A. Pastur, Spectra of random self-adjoint operators, Usp. Mat. Nauk, 28, No. 1 (1973) pp. 3-63.