Minimal continuous multifunctions
Subject Areas : General topologyİ. Zorlutuna 1 , S. Atmaca 2 , N. O. Diri 3
1 - Sivas Cumhuriyet University, Turkey
2 - Sivas Cumhuriyet University, Turkey
3 - Sivas Cumhuriyet University, Turkey
Keywords:
Abstract :
[1] M. Akdag, F. Erol, Upper and lower α(µX,µY)-continuous multifunctions, J. Linear. Topol. Algebra. 4 (1) (2015), 1-9.
[2] P. Alexandroff, Diskrete Raume, Mat. Sbornik. 2 (1937), 501-519.
[3] H. T. Banks, M. Q. Jacobs, A differential calculus for multifunctions, J. Math. Anal. Appl. 29 (1970), 246-272.
[4] C. Berge, Espaces Topologiques, Fonctions Multivoques, Dunod, Paris, 1959.
[5] T. F. Bridgland, Trajectory integrals of the set valued functions, Pacific J. Math. 33 (1970), 43-67.
[6] C. Carpintero, E. Rosas, M. Salas-Brown, J. Sanabria, Minimal open sets on generalized topological space, Proyecciones (Antofagasta). 36 (4) (2017), 739-751.
[7] G. Choquet, Convergences, Annales de Universite de Grenoble. 23 (1947-1948), 55-112.
[8] Ö. Deger, On the solvability of an inequality system via polyhedral convex set-valued mappings, Int. J. Adv. Eng. Pure Sci. 32 (4) (2020), 494-498.
[9] F. S. De Blasi, On the differentiability of multifunctions, Pacific J. Math. 66 (1976), 67-81.
[10] S. Eilenberg, D. Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. 68 (1946), 222-244.
[11] H. Hahn, Reele Funktionen, Akademische Verlagsgesellschaft, Leipzig, 1932.
[12] M. H. Harbau, B. Ali, Hybrid linesearch algorithm for pseudomonotone equilibrium problem and fixed points of Bregman quasi asymptotically nonexpansive multivalued mappings, J. Linear. Topol. Algebra. 10 (2) (2021), 153-177.
[13] F. Hausdorff, Mengenlehre, Berlin: De Gruyter. English translation: Set Theory, Chelsea, New York, 1962.
[14] S. Hu, N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume II: Applications, Kluwer, Dordrecht, The Netherlands, 2000.
[15] M. Q. Jacops, Measurable multivalued mappings and Lusin’s theorem, Trans. Amer. Math. Soc. 143 (1968), 471-481.
[16] S. Kakutani, A generalization of Brouwer’s fixed point theorem, Duke Math. J. 8 (3) (1941), 457-459.
[17] Y. Kücük, On strongly θ−continuousness and almost strongly θ-continuousness of multifunctions, Pure. Appl. Math. Sci. 40 (1-2) (1994), 43-54.
[18] C. Kuratowski, Les fonctions semi-continues dans l’espace des ensembles fermes, Fund. Math. 18 (1) (1932),
148-159.
[19] C. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1) (1930), 301-309.
[20] A. Lechicki, On continuous and measurable multifunctions, Comment. Math. 21 (1979), 141-156.
[21] F. Nakaoka, N. Oda, Minimal closed sets and maximal closed sets, Int. J. Math. Math. Sci. (2006), 1-8.
[22] F. Nakaoka, N. Oda, Some applications of minimal open sets, Int. J. Math. Math. Sci. 27 (8) (2001), 471-476.
[23] T. Noiri, V. Popa, Almost weakly continuous multifunctions, Demonstratio Math. 26 (2) (1993), 363-380.
[24] T. Noiri, V. Popa, On m-I-continuous multifunctions, Eur. J. Pure. Appl. Math. 15 (1) (2022), 1-14.
[25] T. Noiri, V. Popa, On upper and lower M-continuous multifunctions, Filomat. (2000), 73-86.
[26] V. Popa, Multifunctii tari continue (Strongly continuous multlfunctions), Bul. St. Tehn. Inst. Politehn. ”T. Vuia”. Timi¸ soara. Matem. Fiz. 27 (41) (1982), 5-7.
[27] V. Popa, On certain properties of quasi continuous and almost continuous multifunctions, Stud. Cere. Mat. 30 (1978), 441-446.
[28] V. Popa, Weakly continuous multifunctions, Boll. Un. Mat. Ital. (5) (15-A) (1978), 379-388.
[29] L. Ratner, Multivalued Transformations, University of California, 1949.
[30] E. Rosas, C. Carpintero, J. Sanabria, J. Vielma, Characterizations of upper and lower (α,β,θ,δ,I)-continuous multifunctions, Mat. Stud. 55 (2) (2021), 206-213.
[31] R. E. Smithson, Multifunctions, Nieuw Archief Voor Wiskunde. 20 (3) (1972), 31-53.
[32] T. Speer, A Short Study of Alexandroff Spaces, arXiv:0708.2136, 2007.
[33] W. L. Stroter, Continuous multivalued functions, Boletim do Sociedade de S. Paulo. 10 (1955), 87-120.
[34] W. L. Stroter, Multi-homotopy, Duke Math. J. 22 (2) (1955), 281-285.
[35] L. Vietoris, Kontinua zweiter ordnung, Monatsh Math. Phys. 33 (1923), 49-62.
[36] L. Vietoris, Uber den hoheren Zusammenhang kompakter Raume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann. 97 (1927), 454-472.
[37] A. D. Wallace, A fixed point theorem for trees, Bull. Amer. Math. Soc. 47 (1941), 757-760.
[38] D. Wine, Locally paracompact spaces, Glasnik Mat. 10 (30) (1975), 351-357.
[39] I. Zorlutuna, Soft set-valued mappings and their application in decision making problems, Filomat. 35 (5) (2021), 1725-1733.
[40] I. Zorlutuna, ω-continuous multifunctions, Filomat. 27 (1) (2013), 165-172.