A log-convex approach to Jensen-Mercer inequality
Subject Areas : Functional analysisM. Davarpanah 1 , H. R. Moradi 2
1 - Department of Mathematics, Ferdows Branch, Islamic Azad University, Ferdows, Iran
2 - Department of Mathematics, Payame Noor University (PNU), P.O. Box, 19395-4697, Tehran, Iran
Keywords:
Abstract :
[1] S. S. Dragomir, Bounds for the normalised Jensen functional, Bull. Austral. Math. Soc. 3 (2006), 471-478.
[2] L. Fejér, Über die fourierreihen, II, Math. Naturwise. Anz Ungar. Akad. Wiss. 24 (1906), 369-390.
[3] J. Hadamard, Étude sur les proprits des fonctions entiéres et en particulier dune fonction considérée par Riemann (French), Journ. de Math. 58 (1893), 171-215.
[4] M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Algebra. 26 (2013), 742–753.
[5] A. McD. Mercer, A variant of Jensen’s inequality, J. Inequal. Pure Appl. Math. 4 (2003), 2:73.
[6] H. R. Moradi, S. Furuichi, M. Sababheh, On the Operator Jensen-Mercer Inequality, Operator Theory, Functional Analysis and Applications, Birkh´’auser, Cham 282, 2021.
[7] L. Nasiri, A. Zardadi, H. R. Moradi, Refining and reversing Jensen’s inequality, Oper. Matrices. 16 (1) (2022), 19-27.
[8] M. Sababheh, S. Furuichi, H. R. Moradi, Composite convex functions, J. Math. Inequal. 15 (3) (2021), 1267-1285.
[9] M. Sababheh, H. R. Moradi, S. Furuichi, Operator inequalities via geometric convexity, Math. Inequal. Appl. 22(4) (2019), 1215-1231.
[10] M. Sababheh, H. R. Moradi, Radical convex functions, Mediterr. J. Math. 18 (2021), 18:137.