Hybrid linesearch algorithm for pseudomonotone equilibrium problem and fixed points of Bregman quasi asymptotically nonexpansive multivalued mappings
Subject Areas : Fixed point theory
1 - Department of Science and Technology Education, Bayero University, Kano, Nigeria
2 - Department of Mathematical Sciences, Bayero University, Kano, Nigeria
Keywords:
Abstract :
[1] Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, In theory and applications of nonlinear operators of accretive and monotone type, Lecture Notes Pure Appl. Math. (1996), 15-50.
[2] A. Ambrosetti, G. Prodi, A Primer of Nonlinear Analysis, Cambridge University Press, Cambridge, 1993.
[3] P. N. Anh, A hybrid extragradient method extented to fixed point problems and equilibrium problems, Optimization. 62 (2) (2013), 21-283.
[4] J. P. Aubin, Optima and Equilibria, Springer, New York, 1998.
[5] H. H. Bauschke, J. M. Borwein, P. L. Combettes, Essential smoothness, essential strict convexity and Legendre functions in Banach spaces, Commun. Contemp. Math. 3 (2001), 615-647.
[6] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Mathematics Students. 63 (1994), 123-145.
[7] J. F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, USA, 2000.
[8] L. M. Bregman, The relation method of finding the common points of convex sets and its application to solution of problems in convex programming, USSR, Comput. Math. Math. Phys. 7 (1967), 200-217.
[9] D. Butnariu, A. N. Lusem, Totally Convex Functions for Fixed Point Computation and Finite Dimensional Optimization, Kluwer Academics Publishers, Dordrecht, 2000.
[10] D. Butnariu, E. Resmerita, Bregman distance, totally convex functions and method for solving operator equation in Banach spaces, Abst. Appl. Anal. (2006), 2006:84919.
[11] D. Butnariu, A. N. Iusem, C. Zlinescu, On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces, J. Convex Anal. 10 (2003), 35-61.
[12] C. Byrne, A unified treatment of some iteratve algorithms in signal processing and image reconstruction, Inverse Problems. 20 (2004), 103-120.
[13] L. C. Ceng, J. C. Yao, A hybrid Iterative Scheme for mixed equilibrium problem and fixed point problem, J. Comput. Appl. Math. 214 (2008), 186-201.
[14] Y. Censor, A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory. Appl. 34 (1981), 321-358.
[15] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
[16] V. H. Dang, Weak and strong convergence of subgradient extragradient methods for pseudomonotone equilibrium problems, Commun. Korean Math. Soc. 31 (2016), 879-893.
[17] P. Daniele, F. Giannessi, A.Maugeri, Equilibrium Problems and Variational Models, Kluwer Academic, Dordrecht, The Netherlands, 2003.
[18] G. Z. Eskandani, M. Raeisi, T. M. Rassias, A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance, J. Fixed Point Theory Appl. (2018), 20:132.
[19] D. V. Hieu, Common solutions to pseudomonotone equilibrium problems, Bull. Iran. Math. Soc. 42 (2016), 1207-1219.
[20] D. V. Hieu, Convergence analysis of a new algorithm for strongly pseudomonotone equilibrium problems, Numer. Algorith. 77 (4) (2018), 983-1001.
[21] Z. Jouymandi, F. Moradlou, Extragradient and linesearch algorithms for solving equilibrium problems and fixed point problems in Banach spaces, arXiv:1606.01615[Math].
[22] Y. Li, H. Liu, Srong convergence of hybrid Halpern iteration for Bregman totally quasi-asymptotically nonexpansive multivalued mappings in rreflexive Banach spaces with application, Fixed Point Theory Appl. (2014), 2014:186.
[23] V. Martin-Marquez, S. Reich, S. Sabach, Iterative methods for approximating fixed points of Bregman nonexpansive operators, DCDS. 6 (2013), 1043-1063.
[24] E. Naraghirad, J. C. Yao, Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. (2013), 2013:141.
[25] J. W. Peng, Iterative algorithms for mixed equilibriums, strict pseudocontractions and monotone mappings, J. Optim. Theory. Appl. 144 (2010), 107-119.
[26] N. Petrot, K. Wattanawitoon, P. Kumam, A hybrid projection method for generalized mixed equilibrium problems and fixed point problems in Banach spaces, Nonlinear Anal. Hybrid Syst. 4 (2010), 631-643.
[27] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer, Berlin, Germany, 1993.
[28] X. Qin, Y. J. Cho, S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Math. Appl. 225 (2009), 20-30.
[29] S. Reich, A weak convergence theorem for the alternating method with Bregman distance: Theory and Application of Nonlinear Operators, Marcel Dekker, New York, (1996), 313-318.
[30] S. Reich, S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex. Anal. 10 (2009), 471-485.
[31] S. Reich, S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim. 31 (2010), 22-44.
[32] J. J. Strodiot, V. H. Nguyen, P. T. Vuong, Stong convergence of two hybrid extragradient methods for solving equilibrium problems and fixed point problems, Vietnam J. Math. 40 (2) (2013), 371-389.
[33] A. Tada, W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping and equilibrium problem, J. Optim. Theory. Appl. 133 (2007), 359-370.
[34] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokahama Publishers, Yokahama, 2000.
[35] S. Takahashi, W. Takahashi, Viscosity Approximation methods for Equilibrium problems and fixed point problems in Hilbert Spaces, J. Math. Anal. Appl. 331 (2007), 506-515.
[36] W. Takahashi, K. Zembayash, Strong convergence theorem by new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008), 2008:528476.
[37] J. V. Tiel, Convex Analysis: An Introduction, Wiley, New York, 1984.
[38] Q. D. Tran, L. D. Muu, H. V. Nguyen, Extragradient algorithms extended to equilibrium problems, J. Optim. 57 (2008), 749-776.
[39] G. C. Ugwunnadi, B. Ali, I. Idris, M. S. Minjibir, Strong convergence theorem for quasi-Bregman strictly pseudocontractive mappings and equilibrium problems in Banach spaces, Fixed Point Theory Appl. (2014), 2014:231.
[40] Q. Yuan, M. J. Shang, Ky Fan inequalities, ϕ-distances, and generalizesd asymptotically quasi-ϕ-nonexpansive mappings, J. Fixed Point Theory. (2013), 2013:4.
[41] C. Zlinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, USA, 2002.
[42] Q. N. Zhang, H. L. Wu, Hybrid algorithsms for equilibrium and common fixed point problems with applications, J. Inequal. Appl. (2014), 2014:221.