Inverse eigenvalue problem for bordered diagonal matrices
Subject Areas : Numerical analysisS. Mashayekhi 1 , S. M. Karbassi 2 , S. A. Shahzadefazeli 3
1 - Department of Mathematics, Faculty of Sciences, Arak University, Arak 38156-8-8349, Iran
2 - Faculty of Mathematics, Yazd University, Yazd, Iran
3 - Faculty of Mathematics, Yazd University, Yazd, Iran
Keywords:
Abstract :
[1] G. W. Bing, Introduction to the Nonlinear Control Systems, Science Press, 1988 (in Chinese).
[2] M. T. Chu, G. H. Golub, Inverse Eigenvalue Problems: Theory, Algorithms and applications, Oxford University Press, New York, 2005.
[3] L. Elsner, C. He, Perturbation and interlace theorems for the unitary eigenvalue problem, Linear Algebra and its Applications. 188 (1993), 207-229. 336-347.
[4] G. M. L. Gladwell, N. B. Willms, The construction of tridiagonal system from its frequency response at an interior point, Inverse Problems 4 (1988), 1013-1024.
[5] A. M. Lietuofu, The Stability of the Nonlinear Adjustment Systems, Science Press, 1959 (in Chinese).
[6] J. Peng, X. Y. Hu, L. Zhang, Two inverse eigenvalue problems for a special kind of matrices, Linear Algebra and its Applications. 416 (2006), 336-347.
[7] H. Pickman, J. Egana, R. L. Soto, Extermal inverse eigenvalue problem for bordered diagonal matrices, Linear Algebra and its Applications. 427 (2007), 256-271.