A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
Subject Areas : Numerical analysisM. H. Derakhshan 1 , A. Aminataei 2
1 - Faculty of Mathematics, K. N. Toosi University of Technology, P. O. Box: 16765-3381, Tehran, Iran
2 - Faculty of Mathematics, K. N. Toosi University of Technology, P. O. Box: 16765-3381, Tehran, Iran
Keywords:
Abstract :
[1] M. Ahmadi Darani, A. Saadatmandi, The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications, Comput. Methods. Differ. Equ. 5 (1) (2017), 67-87.
[2] A. Abedian, A. Düster, Equivalent Legendre polynomials: Numerical integration of discontinuous functions in the finite element methods, Comput. Methods. Appl. Mech. Eng. 343 (2019), 690-720.
[3] M. A. Abdelkawy, A collocation method based on Jacobi and fractional order Jacobi basis functions for multi-dimensional distributed-order diffusion equations, Int. J. Nonlinear. Sci. Numer. Simul. 19 (7-8) (2018), 781-792.
[4] A. Ansari, A. Refahi Sheikhani, H. Saberi Najafi, Solution to system of partial fractional differential equations using the fractional exponential operators, Math. Methods. Appl. Sci. 35 (1) (2012), 119-123.
[5] D. Baleanu, B. Shiri, H. M. Srivastava, M. Al Qurashi, A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel, Adv. Differ. Equ. 2018, 2018:353.
[6] M. Behroozifar, N. Habibi, A numerical approach for solving a class of fractional optimal control problems via operational matrix Bernoulli polynomials, J. Vib. Control. 24 (12) (2018), 2494-2511.
[7] A. H. Bhrawy, M. A. Zaky, J. A. T. Machado, Numerical solution of the two-sided space-time fractional
telegraph equation via Chebyshev tau approximation, J. Optim. Theory. Appl. 174 (1) (2017), 321-341.
[8] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods, Springer-Verlag, Berlin, 2006.
[9] E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl. 62 (5) (2011), 2364-2373.
[10] M. R. Eslahchi, M. Dehghan, S. Amani, The third and fourth kinds of Chebyshev polynomials and best uniform approximation, Math. Comput. Model. 55 (5-6) (2012), 1746-1762.
[11] C. M. Fan, C. N. Chu, B. Sarler, T. H. Li, Numerical solutions of waves-current interactions by generalized finite difference method, Eng. Anal. Bound. Elem. 100 (2019), 150-163.
[12] R. Garra, R. Gorenflo, F. Polito, Z. Tomovski, Hilfer-Prabhakar derivatives and some applications, Appl. Math. Momput. 242 (2014), 576-589.
[13] Y. Gu, W. Qu, W. Chen, L. Song, C. Zhang, The generalized finite difference method for long-time dynamic modeling of three-dimensional coupled thermoelasticity problems, J. Comput. Phys. 384 (2019), 42-59.
[14] O. E. Hepson, A. Korkmaz, I. Dag, Exponential B-spline collocation solutions to the Gardner equation, Int. J. Comput. Math. 97 (4) (2020), 837-850.
[15] M. H. Heydari, Z. Avazzadeh, A new wavelet method for variable-order fractional optimal control problems, Asian. J. Control. 20 (5) (2018), 1804-1817.
[16] E. Keshavarz, Y. Ordokhani, M. Razzaghi, Numerical solution of nonlinear mixed Fredholm-Volterra integro-differential equations of fractional order by Bernoulli wavelets, Comput. Methods. Differ. Equ. 7 (2) (2019), 163-176.
[17] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations (Vol. 204), Elsevier Science Limited, North-Holland Mathematics Studies, 2006.
[18] D. Mahapatra, S. Sanyal, S. Bhowmick, An approximate solution of functionally Graded Timoshenko beam using B-spline collocation method, J. Solid. Mech. 11 (2) (2019), 297-310.
[19] V. A. Manrique, M. Ramirez, Simple Approach to Special Polynomials: Laguerre, Hermite, Legendre, Tchebycheff and Gegenbauer, Appl. Math. IntechOpen. (2019), 1-18.
[20] M. Mashoof, A. Refahi Sheikhani, H. S. Naja, Stability analysis of distributed order Hilfer-Prabhakar differential equations, Hacettepe. J. Math. Stat. 47 (2) (2018), 299-315.
[21] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[22] P. Rana, N. Shukla, Y. Gupta, I. Pop, Homotopy analysis method for predicting multiple solutions in the channel flow with stability analysis, Commun. Nonlinear. Sci. Numer. Simul. 66 (2019), 183-193.
[23] K. Rabiei, Y. Ordokhani, Solving fractional pantograph delay differential equations via fractional order Boubaker polynomials, Eng. Comput. 35 (4) (2019), 1431-1441.
[24] H. Rezazadeh, H. Aminikhah, A. Refahi Sheikhani, Stability analysis of Hilfer fractional differential systems, Math. Commun. 21 (1) (2016), 45-64.
[25] B. Sahiner, M. Sezer, Determining constant breadth curve mate of a curve on a surface via Taylor collocation method, New Trends. Math. Sci. 6 (3) (2018), 103-115.
[26] M. R. M. Shabestari, R. Ezzati, T. Allahviranloo, Numerical solution of fuzzy fractional integro differential equation via two-dimensional Legendre wavelet method, J. Intell. Fuzzy. Syst. 34 (4) (2018), 2453-2465.
[27] A. Shojaei, U. Galvanetto, T. Rabczuk, A. Jenabi, M. Zaccariotto, A generalized finite difference method based on the Peridynamic differential operator for the solution of problems in bounded and unbounded domains, Comput. Methods. Appl. Mech. Eng. 343 (2019), 100-126.
[28] E. V. P. Spreafico, M. Rachidi, New approach of Bernoulli and Genocchi Numbers and their associated polynomials via generalized Fibonacci sequences of order, Proceeding Series. Braz. Soc. Comput. Appl. Math. 6 (2) (2018), 010436-(1-7).
[29] K. Yadav, J. P. Jaiswal, On the operational matrix for fractional integration and its application for solving Abel integral equation using Bernoulli wavelets, Glob. J. Pure. Appl. Math. 15 (1) (2019), 81-101.
[30] F. Yousefi, A. Rivaz, W. Chen, The construction of operational matrix of fractional integration for solving fractional differential and integro-differential equations, Neural. Comput. Appl. 31 (6) (2019), 1867-1878.