Operator frame for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$
Subject Areas : Functional analysis
1 - Department of Mathematics, University of Ibn Tofail, B.P. 133, Kenitra, Morocco
2 - Department of Mathematics, University of Ibn Tofail, B.P. 133, Kenitra, Morocco
Keywords:
Abstract :
[1] A. Alijani, M. A. Dehghan, ∗-frames in Hilbert C∗-modules, U.P.B. Sci. Bull. (Ser. A). 73 (4) (2011), 89-106.
[2] Lj. Arambaic, On frames for countably generated Hilbert C∗-modules, Proc. Amer. Math. Soc. 135 (2007), 469-478.
[3] O. Christensen, An Introduction to Frames and Riesz Bases, Brikhauser, 2016.
[4] J. B. Conway, A Course in Operator Theory, American Mathematical Society, 2000.
[5] F. R. Davidson, C∗-algebra by example, Fields Ins. Monog. 1996.
[6] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
[7] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858.
[8] A. Khosravi, B. Khosravi, Frames and bases in tensor products of Hilbert spaces and Hilbert C∗-modules, Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 1-12.
[9] A. Khosravi, B. Khosravi, Fusion frames and g-frames in Hilbert C∗-modules, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), 433-446.
[10] E. C. Lance, Hilbert C∗-modules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture Series, 1995.
[11] C. Y. Li, H. X. Cao, Operator Frames for B(H), Wavelet Analysis and Applications, Applications of Numerical Harmonic Analysis, Springer, 2006.
[12] W. Paschke, Inner product modules over B *-algebra, 2 (1973), 443-468.