Conservation laws and invariant solutions of time-dependent Calogero-Bogoyavlenskii-Schiff equation
Subject Areas : Differential geometryY. AryaNejad 1 , R. Mirzavand 2
1 - Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Iran
2 - Institute of Advanced Studies, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
Keywords:
Abstract :
[1] S. C. Anco, M. L. Gandarias, E. Recio, Line-solitons, line-shocks, and conservation laws of a universal KP-like equation in 2+1 dimensions, J. Math. Anal. Appl. 504 (2021), 1:125319.
[2] Y. AryaNejad, Symmetry Analysis of wave equation on conformally Flat spaces, J. Geom. phys 161 (2021), 161:104029.
[3] Y. AryaNejad, Exact solutions of Diffusion Equation on sphere, Comput. Methods Differ. Equ. 10(3) (2022), 789-798.
[4] G.W. Bluman, S.C Anco, Symmetry and integration methods for differential equations, Springer, 2002.
[5] M. S. Bruzon, M. l. Gandarias, C. Muriel, J. Ramierez, G. S. Saez, F. R. Romero, The Calogero-Bogoyavlenskii-Schiff equation in (z+1) dimensions, Theor. Math. phys. 137 (1) (2003), 1367-1377.
[6] M. L.Gandarias, M. Torrisi, A. Valenti, Symmetry classification, and optimal systems of a non-linear wave equation, Internet. J. Nonlinear Mech. 39 (2004), 389-398.
[7] Y. N. Grigoriev, N. H. Ibrgimov, V. F. kovalev, S. V. Meleshko, Symmetries of Integro-Differential Equations: with Applications in Mechanics and Plasma Physics, Springer, 2010.
[8] M. Jafari, A. Tanhaeivash, Symmetry group analysis and similarity reductions of the thin film equation, J. Linear. Topological. Algebra. 10 (4) (2021), 287-293.
[9] AP. Màrquez, TM. Garrido, E. Recio, R. De la Rosa, Lie symmetries and exact solutions for a fourth-order nonlinear diffusion equation, Math. Meth. Appl. Sci. 45 (17) (2022), 10614-10627.
[10] A. Motamednezhad, F. Khajevand, Symmetry analysis and exact solutions of acoustic equation, Comput. Methods. Diff. Equ. 8 (3) (2020), 523-536.
[11] M. Nadjafikhah, Lie symmetries of inviscid burgers equations, Adv. Appl. Clifford Algebras. 19 (1) (2009), 701-712.
[12] L. V. Ovsiannikov, Group analysis of differential equations, Academic press, New York, 1982.
[13] P. J. Olver, P. Rosenau, Group-invariant solutions of differential equations, SIAM J. Appl. Math. 47 (2) (1987), 263-278.
[14] S. Rashidi, S. R. Hejazi, Self-adjointness, Conservation laws and invariant solutions of the Buckmaster equation, Comput. Methods Diff. Equ. 8 (1) (2020), 85-98.
[15] A. M. Wazwaz, A variety of completely integrable Calogero Bogoyavlenskii Schiff equation with time dependent coefficints, Inter. J. Numerical Methods. Heat. Fluid. Flow. 2020, online.