The method of radial basis functions for the solution of nonlinear Fredholm integral equations system.
Subject Areas : History and biographyJ. Nazari 1 , M. Nili Ahmadabadi 2 , H. Almasieh 3
1 - Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University,
Isfahan, Iran
2 - Department of Mathematics, Najafabad Branch, Islamic Azad University,
Najafabad, Iran
3 - Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University,
Isfahan, Iran
Keywords:
Abstract :
[1] H. Almasieh, J. N. Meleh, A meshless method for the numerical solution of nonlinear Volterra-Fredholm integro-differential equations using radial basis functions, International Conference on Mathematical Sciences & computer Engineering (ICMSCE 2012).
[2] H. Almasieh, J. N. Meleh, Hybrid functions method based on radial basis functions for solving nonlinear Fredholm integrad equations, Journal of Mathematical Extention. 7 (3) (2013), 29-38.
[3] H. Almasieh, J. N. Meleh, Numerical solution of a class of mixed two-dimensional nonlinear Volterra-Fredholm integral equations using multiquadric radial basis functions, J. Comput. Appl. Math. 260 (2014), 173-179.
[4] H. Almasieh, M. Roodaki, Triangular functions method for the solution of Fredholm integral equations system, Ain Shams Engineering Journal 3 (2012), 411-416.
[5] K. E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge University Press, Cambridge, 1997.
[6] E. Babolian, Z. Mansouri, A. Hatamzadeh-Varmarzgar, A direct method for numerically solving integral equations systems using orthogonal traingular functions, International Journal of Industrial Mathematics. 1 (2) (2009), 135-145.
[7] E. Babolian, J. Biazar, A. R. Vahidi, The decomposition method applied to systems of Fredholm integral equations of the second kind, Appl. Math. Comput. 148 (2004), 443-52.
[8] A. H.-D. Cheng, M. A. Golberg, E. J. Kansa, G. Zammito, Exponential convergence and H-C multiquadric collocation method for partial differential equations, Numer. Meth. Partial. Differ. Equa. 19 (5) (2003), 571-594.
[9] L. M. Delves, J. L. Mohammed, Computational methods for integral equations, Cambridge University Press, 1985.
[10] M. C. De Bonis, C. Laurita, Numerical treatment of second kind integral equation systems on bounded intervals, J. Comput. Appl. Math. 217 (2008), 67-87.
[11] K. Maleknejad, M. Shahrezaee, H. Khatami, Numerical solution of integral equations system of the second kind by blockpulse functions, Appl. Math. Comput. 166 (1) (2005), 15-24.
[12] O. M. Ogunlaran, O. F. Akinlotan, A computational method for system of linear Fredholm integral equations, Mathematical Theory and Modeling. 3 (4) (2013), 1-6.
[13] K. Parand, J. A. Rad, Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis funetions, Appl. Math. Comput. 218 (2012), 5292-5309.
[14] J. Rashidinia, M. Zarebnia, Convergence of approximate solution of system of Fredholm integral equations, J. Math. Anal. Appl. 333 (2007), 1216-1227.
[15] M. Roodaki, H. Almasieh, Delta basis functions and their applications to systems of integral equations, Comput. Math. Appl. 63 (1) (2012), 100-109.
[16] A. R. Vahidi, M. Mokhtari, On the decomposition method for system of linear Fredholm integral equations of the second kind, Appl. Math. Sci. 2 (2) (2008), 57-62.
[17] H. A. Zedan, E. Alaidarous, Haar wavelet method for the system of integral equations, Abstract and Applied Analysis. 2014 (2014), 1-9.