Duals and approximate duals of g-frames in Hilbert spaces
Subject Areas : History and biographyM. Mirzaee Azandaryani 1 , A. Khosravi 2
1 - Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran
2 - Faculty of Mathematical Sciences
and Computer, Kharazmi University, Tehran, Iran
Keywords:
Abstract :
[1] O. Christensen, R. S. Laugesen, Approximate dual frames in Hilbert spaces and applications to Gabor frames, Sampl. Theory Signal Image Process. 9 (2011), 77-90.
[2] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283.
[3] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
4] A. Khosravi, M. Mirzaee Azandaryani, Approximate duality of g-frames in Hilbert spaces, Acta Mathematica Scientia. 34B(3) (2014), 639-652.
[5] A. Khosravi, M. Mirzaee Azandaryani, G-frames and direct sums, Bull. Malays. Math. Sci. Soc. 36(2) (2013), 313-323.
[6] A. Khosravi, M. Mirzaee Azandaryani, Fusion frames and g-frames in tensor product and direct sum of Hilbert spaces, Appl. Anal. Discrete Math. 6 (2012), 287-303.
[7] A. Khosravi, K. Musazadeh, Fusion frames and g-frames, J. Math. Anal. Appl. 342 (2008), 1068-1083.
[8] G. J. Murphy, C∗-Algebras and Operator Theory. Academic Press, San Diego, 1990.
[9] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), 437-452.