The effects of Tomatidine alkaloid on biofilm formation and the exprsssion of quorum sensing associated genes in Pseudomonas aeruginosa
Subject Areas : BacteriologyHadi Ghoomdost Noori 1 , Omid Tadjrobehkar 2 , Elham Moazamian 3
1 - Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 - Microbiology department(Bacteriology & Virology), Afzalipour school of medicine, Kerman university of medical sciences, Kerman, Iran
3 - Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Keywords: Biofilm, Quorum sensing, Pseudomonas aeruginosa, tomatidine,
Abstract :
Background and Objectives: Quorum sensing system plays an important role in regulating pathogenic propertise and biofilm formation of Pseudomonas aeruginosa. Therefore, inhibiting the quorum sensing system can be a suitable solution in the treatment of infections related to Pseudomonas aeruginosa biofilm. This study was conducted to investigate the effects of sub-inhibitory concentretions of tomatidine on the expression of quorum sensing genes and biofilm formation in Pseudomonas aeruginosa. Materials and methods: The present study was a laboratory interventional study. Biofilm formation was evaluated by microtiter plate method. The RNA of all bacteria was extracted using a column RNA isolation kit and the expression of lasI, lasR, rhlI, rhlR and algD genes in both normal conditions and after treatment with tomatidine was analyzed. Antibiotic resistance was evaluated by the disk diffusion method. Results: The highest and least antibiotic resistance was detected against ticarcillin (80%) and colistin (5%), respectively. Tomatidine up to a concentration of 2 mg/ml had no inhibitory effect on Pseudomonas aeruginosa. 55% of the strains were weak biofilm producers and 45% were strong biofilm producers. The expression of all genes and biofilm formation increased after treatment with tomatidine. The lasI and rhlR genes were respectively the most and least affected genes. Among the five genes examined, only rhlR is significantly more expressed in weak biofilm producers. Conclusion: The results showed, contrary to expectation, the sub-MIC concentrations of tomatidine increase the expression of quorum sensing genes and biofilm formation in Pseudomonas aeruginosa.
1-Tarkashvand, M., Lakzian, A., Fotovat, A., Mohammady, M. Isolation screening, and efficiency of Psudomonas isolates in biofilm formation on organic and inorganic carriers and phenanthrene bioremediation. Journal of Microbial World. 2020; 13(1): 6-20.
2-Ranieri, M.R., Whitchurch, C.B., Burrows, L.L. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials. Curr Opin Microbiol. 2018; 45: 164-169.
3-Thi, M. T. T., Wibowo, D., & Rehm, B. H. Pseudomonas aeruginosa biofilms. International journal of molecular sciences. 2020; 21(22): 8671.
4-Firouzi Dalvand, L., Hosseini, F., Moradi Dehaghi, Sh., Siasi Torbati, E. Antibacterial and antibiofilm activity of bismuth oxide nanoparticles produced by bacillus subtilis against clinical Pseudomonas aeruginosa isolated from wound infections. Journal of Microbial World. 2019; 12(2): 172-185.
5-Saxena, P., Joshi, Y., Rawat, K., Bisht, R. Biofilms: architecture, resistance, quorum sensing and control mechanisms. Indian J. Microbiol. 2019; 59(1): 3-12.
6-Tavafi H, Abdi-Ali A, Ghadam P, Gharavi S. Evaluation of the synergistic effect of bacterial recombinant alginate lyase and therapeutic antibiotics on the growth of planktonic Pseudomonas aeruginosa. Journal of Microbial World. 2019 Aug 23;12(2):160-71.
7-Smith, R.S., Iglewski, B.H. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 2003; 6(1): 56-60.
8-T. Oluwabusola, E., Katermeran, N P., Han Poh, W., Goh, T M B., Tan. L T., Diyaolu, O., Tabudravu, J., Ebel, R., A. Rice, S., Jaspars, M. Inhibition of the quorum sensing system, elastase production and biofilm formation in Pseudomonas aeruginosa by sammaplin A and Bisaprasin. Molecules. 2022; 27(1721): 1-17.
9-Schuster, M., Greenberg, E.P. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol.2018; 296(2-3): 73-81.
10-Rajkumari, J., Borkotoky, S., Murali, A., Suchiang, K., Mohanty, S.K., Busi, S. Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1. Biotechnol Lett. 2018; 40(7): 1087-1100.
11-Almohaywi, B., Tin Yu, T., Iskander, G., Sabir, Sh., Bhadbhade, M., Blak, D., Kumar, N. Synthesis of alkyne-substituted dihydropyrrolones as bacterial quorum-sensing inhibitors of Pseudomonas aeruginosa. Antibiotics. 2022; 11(151): 1-16.
12-Lima, M.R., Ferreira, G.F., Neto, W.R.Nunes, Monteiro, J.M., Santos, A.R.C., Tavares, P. B., Denadai, A.M.L., Bomfim, M.R.Q., Santos, V.L.Dos, Marques, S.G., de Souza Monteiro, A. Evaluation of the interaction between polymyxin B and Pseudomonas aeruginosa biofilm and planktonic cells: reactive oxygen species induction and zeta potential. BMC Microbiol.2019; 19(1): 115.
13-Falahati, N., Jamali, H., Kargar, M. and Kafilzadeh, F., 2022. The evaluation of the effect of gold nanoparticles on the expression of (MexA/B) efflux pump genes from the RND family in multidrug resistant Pseudomonas aeruginosa strains. Journal of Microbial World, 15(1), pp.78-87.
14-Li, Q., Mao, S., Wang, H., Ye, X. The molecular architecture of Pseudomonas aeruginosa quorum-sensing inhibitors. Mar. Drugs. 2022; 20(488): 1-28.
15-Cushnie, T.P., Cushnie, B., Lamb, A.J. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents. 2014; 44(5): 377-386.
16-Lamontagne Boulet, M., Isabelle, C., Guay, I., Brouillette, E., Langlois, J.P., Jacques, P.E., Rodrigue, S., Brzezinski, R., Beauregard, P.B., Bouarab, K., Boyapelly, K., Boudreault, P.L., Marsault, E., Malouin, F. Tomatidine is a lead antibiotic molecule that targets Staphylococcus aureus ATP synthase subunit C. Antimicrob. Agents Chemother. 2018; 62(6).
17-Normandin, C., Boudreault, P.L. Concise large-scale synthesis of tomatidine, a potent antibiotic natural product. Molecules. 2021; 26(19): 6008.
18-Karami, P., Khaledi, A., Mashoof, R.Y., Yaghoobi, M.H., Karami, M., Dastan, D., Alikhani, M.Y. The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa. Gene Rep. 2020; 18: 100561.
19-Weinstein, M.P. Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute. 2021
20-Wikler, M. Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. In: Approved Standard 10th ed. M07-A11. 2018.
21-Kirmusaoglu, S. The methods for detection of biofilm and screening antibiofilm activity of agents. In: Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods, 15th ed. IntechOpen, pp. 2019; 1-17.
22-Mitchell, G., Lafrance, M., Boulanger, S., Seguin, D.L., Guay, I., Gattuso, M., Marsault, E., Bouarab, K., Malouin, F. Tomatidine acts in synergy with aminoglycoside antibiotics against multiresistant Staphylococcus aureus and prevents virulence gene expression. J. Antimicrob. Chemother. 2012 67(3): 559-568.
23-Hnamte, S., Parasuraman, P., Ranganathan, S., Ampasala, D.R., Reddy, D., Kumavath, R. N., Suchiang, K., Mohanty, S.K., Busi, S. Mosloflavone attenuates the quorum sensing controlled virulence phenotypes and biofilm formation in Pseudomonas aeruginosa PAO1: In vitro, in vivo and in silico approach. Microb. Pathog. 2019; 131: 128-134.
24-Schmittgen, T.D., Livak, K.J. Analyzing real-time PCR data by the comparative C (T) method. Nat. Protoc. 2008; 3(6): 1101-1108.
25-Ahmed, S., Rudden, M., Smyth, T.J., Dooley, J.S.G., Marchant, R., Banat, I.M. Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Appl. Microbiol. Biotechnol. 2019; 103(8): 3521-3535.
26-Townsley, L., Shank, E.A. Natural-product antibiotics: cues for modulating bacterial biofilm formation. Trends Microbiol. 2017; 25 (12), 1016–1026.
27-Abd El-Baky, R.M., Masoud, S.M., Mohamed, D.S., Waly, N.G., Shafik, E.A., Mohareb, D. A., Elkady, A., Elbadr, M.M., Hetta, H.F. Prevalence and some possible mechanisms of colistin resistance among multidrug-resistant and extensively drug- resistant Pseudomonas aeruginosa. Infect. Drug Resist. 2020; 13: 323-332.
28-Abbas, H.A., El-Ganiny, A.M., Kamel, H.A. Phenotypic and genotypic detection of antibiotic resistance of Pseudomonas aeruginosa isolated from urinary tract infections. Afr. Health Sci. 2018: 18(1); 11-21.
29-Yamani, L., Alamri, A., Alsultan, A., Alfifi, S., Ansari, M.A., Alnimr, A. Inverse correlation between biofilm production efficiency and antimicrobial resistance in clinical isolates of Pseudomonas aeruginosa. Microb. Pathog. 2021; 157: 104989.
30-Morgan, S.J., Lippman, S.I., Bautista, G.E., Harrison, J.J., Harding, C.L., Gallagher, L.A., Cheng, A.C., Siehnel, R., Ravishankar, S., Usui, M.L., Olerud, J.E., Fleckman, P., Wolcott, R.D., Manoil, C., Singh, P.K., 2019. Bacterial fitness in chronic wounds appears to be mediated by the capacity for high-density growth, not virulence or biofilm functions. PLoS Pathog. 2019; 15(3): e1007511.
31-Sun, Z., Jiao, X., Peng, Q., Jiang, F., Huang, Y., Zhang, J., Yao, F. Antibiotic resistance in Pseudomonas aeruginosa is associated with decreased fitness. Cell Physiol. Biochem. 2013; 31(2-3): 347-354.
32-Pearson, J.P., Pesci, E.C., Iglewski, B.H. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 1997; 179(18): 5756-5767.
33-Kostylev, M., Kim, D.Y., Smalley, N.E., Salukhe, I., Greenberg, E.P., Dandekar, A.A. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc. Natl. Acad. Sci. U. S. A. 2019; 116(14): 7027-7032.
34-Davies, J., Spiegelman, G.B., Yim, G. The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol. 2006; 9(5): 445-453.
35-Guay, I., Boulanger, S., Isabelle, C., Brouillette, E., Chagnon, F., Bouarab, K., Marsault, E., Malouin, F., 2018. Tomatidine and analog FC04-100 possess bactericidal activities against Listeria, Bacillus and Staphylococcus spp. BMC Pharmacol Toxicol. 2018: 19(1): 7.
_||_1-Tarkashvand, M., Lakzian, A., Fotovat, A., Mohammady, M. Isolation screening, and efficiency of Psudomonas isolates in biofilm formation on organic and inorganic carriers and phenanthrene bioremediation. Journal of Microbial World. 2020; 13(1): 6-20.
2-Ranieri, M.R., Whitchurch, C.B., Burrows, L.L. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials. Curr Opin Microbiol. 2018; 45: 164-169.
3-Thi, M. T. T., Wibowo, D., & Rehm, B. H. Pseudomonas aeruginosa biofilms. International journal of molecular sciences. 2020; 21(22): 8671.
4-Firouzi Dalvand, L., Hosseini, F., Moradi Dehaghi, Sh., Siasi Torbati, E. Antibacterial and antibiofilm activity of bismuth oxide nanoparticles produced by bacillus subtilis against clinical Pseudomonas aeruginosa isolated from wound infections. Journal of Microbial World. 2019; 12(2): 172-185.
5-Saxena, P., Joshi, Y., Rawat, K., Bisht, R. Biofilms: architecture, resistance, quorum sensing and control mechanisms. Indian J. Microbiol. 2019; 59(1): 3-12.
6-Tavafi H, Abdi-Ali A, Ghadam P, Gharavi S. Evaluation of the synergistic effect of bacterial recombinant alginate lyase and therapeutic antibiotics on the growth of planktonic Pseudomonas aeruginosa. Journal of Microbial World. 2019 Aug 23;12(2):160-71.
7-Smith, R.S., Iglewski, B.H. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 2003; 6(1): 56-60.
8-T. Oluwabusola, E., Katermeran, N P., Han Poh, W., Goh, T M B., Tan. L T., Diyaolu, O., Tabudravu, J., Ebel, R., A. Rice, S., Jaspars, M. Inhibition of the quorum sensing system, elastase production and biofilm formation in Pseudomonas aeruginosa by sammaplin A and Bisaprasin. Molecules. 2022; 27(1721): 1-17.
9-Schuster, M., Greenberg, E.P. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol.2018; 296(2-3): 73-81.
10-Rajkumari, J., Borkotoky, S., Murali, A., Suchiang, K., Mohanty, S.K., Busi, S. Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1. Biotechnol Lett. 2018; 40(7): 1087-1100.
11-Almohaywi, B., Tin Yu, T., Iskander, G., Sabir, Sh., Bhadbhade, M., Blak, D., Kumar, N. Synthesis of alkyne-substituted dihydropyrrolones as bacterial quorum-sensing inhibitors of Pseudomonas aeruginosa. Antibiotics. 2022; 11(151): 1-16.
12-Lima, M.R., Ferreira, G.F., Neto, W.R.Nunes, Monteiro, J.M., Santos, A.R.C., Tavares, P. B., Denadai, A.M.L., Bomfim, M.R.Q., Santos, V.L.Dos, Marques, S.G., de Souza Monteiro, A. Evaluation of the interaction between polymyxin B and Pseudomonas aeruginosa biofilm and planktonic cells: reactive oxygen species induction and zeta potential. BMC Microbiol.2019; 19(1): 115.
13-Falahati, N., Jamali, H., Kargar, M. and Kafilzadeh, F., 2022. The evaluation of the effect of gold nanoparticles on the expression of (MexA/B) efflux pump genes from the RND family in multidrug resistant Pseudomonas aeruginosa strains. Journal of Microbial World, 15(1), pp.78-87.
14-Li, Q., Mao, S., Wang, H., Ye, X. The molecular architecture of Pseudomonas aeruginosa quorum-sensing inhibitors. Mar. Drugs. 2022; 20(488): 1-28.
15-Cushnie, T.P., Cushnie, B., Lamb, A.J. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents. 2014; 44(5): 377-386.
16-Lamontagne Boulet, M., Isabelle, C., Guay, I., Brouillette, E., Langlois, J.P., Jacques, P.E., Rodrigue, S., Brzezinski, R., Beauregard, P.B., Bouarab, K., Boyapelly, K., Boudreault, P.L., Marsault, E., Malouin, F. Tomatidine is a lead antibiotic molecule that targets Staphylococcus aureus ATP synthase subunit C. Antimicrob. Agents Chemother. 2018; 62(6).
17-Normandin, C., Boudreault, P.L. Concise large-scale synthesis of tomatidine, a potent antibiotic natural product. Molecules. 2021; 26(19): 6008.
18-Karami, P., Khaledi, A., Mashoof, R.Y., Yaghoobi, M.H., Karami, M., Dastan, D., Alikhani, M.Y. The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa. Gene Rep. 2020; 18: 100561.
19-Weinstein, M.P. Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute. 2021
20-Wikler, M. Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. In: Approved Standard 10th ed. M07-A11. 2018.
21-Kirmusaoglu, S. The methods for detection of biofilm and screening antibiofilm activity of agents. In: Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods, 15th ed. IntechOpen, pp. 2019; 1-17.
22-Mitchell, G., Lafrance, M., Boulanger, S., Seguin, D.L., Guay, I., Gattuso, M., Marsault, E., Bouarab, K., Malouin, F. Tomatidine acts in synergy with aminoglycoside antibiotics against multiresistant Staphylococcus aureus and prevents virulence gene expression. J. Antimicrob. Chemother. 2012 67(3): 559-568.
23-Hnamte, S., Parasuraman, P., Ranganathan, S., Ampasala, D.R., Reddy, D., Kumavath, R. N., Suchiang, K., Mohanty, S.K., Busi, S. Mosloflavone attenuates the quorum sensing controlled virulence phenotypes and biofilm formation in Pseudomonas aeruginosa PAO1: In vitro, in vivo and in silico approach. Microb. Pathog. 2019; 131: 128-134.
24-Schmittgen, T.D., Livak, K.J. Analyzing real-time PCR data by the comparative C (T) method. Nat. Protoc. 2008; 3(6): 1101-1108.
25-Ahmed, S., Rudden, M., Smyth, T.J., Dooley, J.S.G., Marchant, R., Banat, I.M. Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Appl. Microbiol. Biotechnol. 2019; 103(8): 3521-3535.
26-Townsley, L., Shank, E.A. Natural-product antibiotics: cues for modulating bacterial biofilm formation. Trends Microbiol. 2017; 25 (12), 1016–1026.
27-Abd El-Baky, R.M., Masoud, S.M., Mohamed, D.S., Waly, N.G., Shafik, E.A., Mohareb, D. A., Elkady, A., Elbadr, M.M., Hetta, H.F. Prevalence and some possible mechanisms of colistin resistance among multidrug-resistant and extensively drug- resistant Pseudomonas aeruginosa. Infect. Drug Resist. 2020; 13: 323-332.
28-Abbas, H.A., El-Ganiny, A.M., Kamel, H.A. Phenotypic and genotypic detection of antibiotic resistance of Pseudomonas aeruginosa isolated from urinary tract infections. Afr. Health Sci. 2018: 18(1); 11-21.
29-Yamani, L., Alamri, A., Alsultan, A., Alfifi, S., Ansari, M.A., Alnimr, A. Inverse correlation between biofilm production efficiency and antimicrobial resistance in clinical isolates of Pseudomonas aeruginosa. Microb. Pathog. 2021; 157: 104989.
30-Morgan, S.J., Lippman, S.I., Bautista, G.E., Harrison, J.J., Harding, C.L., Gallagher, L.A., Cheng, A.C., Siehnel, R., Ravishankar, S., Usui, M.L., Olerud, J.E., Fleckman, P., Wolcott, R.D., Manoil, C., Singh, P.K., 2019. Bacterial fitness in chronic wounds appears to be mediated by the capacity for high-density growth, not virulence or biofilm functions. PLoS Pathog. 2019; 15(3): e1007511.
31-Sun, Z., Jiao, X., Peng, Q., Jiang, F., Huang, Y., Zhang, J., Yao, F. Antibiotic resistance in Pseudomonas aeruginosa is associated with decreased fitness. Cell Physiol. Biochem. 2013; 31(2-3): 347-354.
32-Pearson, J.P., Pesci, E.C., Iglewski, B.H. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 1997; 179(18): 5756-5767.
33-Kostylev, M., Kim, D.Y., Smalley, N.E., Salukhe, I., Greenberg, E.P., Dandekar, A.A. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc. Natl. Acad. Sci. U. S. A. 2019; 116(14): 7027-7032.
34-Davies, J., Spiegelman, G.B., Yim, G. The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol. 2006; 9(5): 445-453.
35-Guay, I., Boulanger, S., Isabelle, C., Brouillette, E., Chagnon, F., Bouarab, K., Marsault, E., Malouin, F., 2018. Tomatidine and analog FC04-100 possess bactericidal activities against Listeria, Bacillus and Staphylococcus spp. BMC Pharmacol Toxicol. 2018: 19(1): 7.