Antibacterial and antibiofilm activity of bismuth oxide nanoparticles produced by Bacillus subtilis against clinical Pseudomonas aeruginosa isolated from wound infections
Subject Areas : Microbial BiotechnologyLeila Firouzi Dalvand 1 , Farzaneh Hosseini 2 , Shahram Moradi Dehaghi 3 , Elham Siasi Torbati 4
1 - Ph.D. student, Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Assistant Professor, Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
3 - Associate Professor, Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran.
4 - Assistant Professor, Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
Keywords: Biofilm, Pseudomonas aeruginosa, Bacillus subtilis, Bismuth oxide nanoparticles,
Abstract :
Background & Objectives: The biological method of nanoparticles synthesis by microorganisms has a special place due to its high environmental compatibility and reduced energy consumption and costs. The aim of this study was to determine the effect of bismuth oxide nanoparticles produced by green methods on bacteria causing hospital infections. Materials & Methods: In this study, 160 samples were collected from burn wound infections in patients hospitalized in Motahari Burn Rescue Hospital. Resistant strains were identified phenotypically and genotypically. Synthesis of bismuth oxide nanoparticles by Bacillus subtilis wild type strain. The synthesis of bismuth oxide nanoparticles was confirmed by infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Finally, the antibacterial activity of nanoparticles against isolated strains was investigated with the standard disk diffusion test. Results: Biosynthesis of nanoparticles showed an average size of 44 nm using Bacillus subtilis. All 44% (71 strains) of Pseudomonas aeruginosa formed a biofilm. Bismuth oxide nanoparticles at a concentration of 2000 ppm were inhibited 5% of Pseudomonas aeruginosa. Conclusion: By increasing the concentration of bismuth oxide nanoparticles, its inhibitory effect increased. The results showed that there is a significant difference between the groups exposed nanoparticle and ciprofloxacin.
stearothermophilus using gamma radiation and their antimicrobial activity. World Appl Sci J.
2013; 22(1): 1-16.
2. Iravani S, Korbekandi H, Mirmohammadi S, Zolfaghari B. Synthesis of silver nanoparticles:
chemical, physical and biological methods. Res Pharm Sci. 2014; 9(6): 385.
3. Gudepalya RR, Mallappa KS, Uma RS, Ghasemzadeh A. Nanoparticles: alternatives against
drug-resistant pathogenic microbes. Molecules. 2016; 21(7): 836.
4. Das VL, Thomas R, Varghese RT, Soniya E, Mathew J, Radhakrishnan E. Extracellular
synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area.
Biotechnol. 2014; 4(2): 121-126.
5. Prasad K, Kulkarin AMR. Lactobacillus assisted synthesis of titanium nanoparticles. List
Nanoscale Res Lett. 2007; 2(5): 248-250.
6. Pourali P, Yahyaei B. Biological production of silver nanoparticles by soil isolated bacteria
and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. J
Trace Elem Med Biol. 2016; 34(3): 22-31.
7. Briand GG, Burford N. Bismuth compounds and preparations with biological or medicinal
relevance. Chem Rev. 1999; 99(9): 2658-2601.
8. Leontie L, Caraman M, Alexe M, Harnagea C. Structural and optical characteristics of bismuth
oxide thin films. Surf Sci. 2002; 507-510: 480-485.
9. Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, Diaz D, Zumeta-Dube I,
Arevalo-Nino K, Cabral-Romero C. Bismuth oxide aqueous colloidal nanoparticles inhibit
Candida albicans growth and biofilm formation. Int J Nanome. 2013; 8(3): 1645-1652.
10. Rabin N, Zheng Y, Opoku TC, Bonsu E, Sintim HO. Biofilm formation mechanisms and
targets for developing anti-biofilm agents. Future Med Chem. 2015; 7(4): 493-512.
11. Basaglia M, Ali MY, Rahman MM, Rahman A, Rahman MM, Sultana T, Casella S. Isolation
of Bacillus spp. from soil and an evaluation of their sensivity towards different extracts and
essential oils of cumin. J Agr Sci Tech. 2014; 16(1): 623-633.
12. Whitman WB, Goodfellow M, Kamperfer P. Bergey's manual of systematic bacteriology. 2nd
ed. New York, NY. Parts of A and B, Springer-Vertlag 2012.
13. Nazari P, Dowlatabadi-Bazaz R, Mofid MR, Pourmand MR, Daryani NE, Faramarzi MA,
Sepehrizadeh Z, Shahverdi AR. The antimicrobial effects and metabolomic footprinting of
carboxyl-capped bismuth nanoparticles against Helicobacter pylori. Appl Biochem Biotechnol.
2013; 172(2): 570-579.
14. Vidhya LD, Roshmi T , Rintu TV , Soniya EV, Jyothis M, Radhakrishnan EK. Extracellular
synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. J
Biotechnol. 2014; 4(2): 121-126.
15. Ninfa, Alexander J, Ballou, David P, Benore, Marilee. Fundamental laboratory approaches for
biochemistry and biotechnology 2nd edition. Wiley; 2009.
16. Jing M, Jia C, Liangsheng Q, Juanqin X. Effect of different calcination temperatures on the
structural and photocatalytic performance of Bi-TiO2/SBA-15. Int J Photo. 2013; 10.
17. Ranjbar R, Owlia P, Saderi H, Owlia P, Saderi H, Mansouri S, Jonaidi-Jafari N, Izadi M,
Farshad S, Arjomandzadegan M. Characterization of Pseudomonas aeruginosa strains isolated
from burned patients hospitalized in a major burn center in Tehran, Iran. Act Med Iran. 2011;
49(10): 675-679.
18. Chapaval L, Moon DH, Gomes JE, Duarte FR, Tsai SM. An alternative method for
Staphylococcus aureus DNA isolation. Arq Bras Med Vet Zootec. 2008; 60(2): 299-306.
19. Wikler MA. Performance standards for antimicrobial sensitivity testing: Seventeenth
Informational Supplement. Wayne PA: Clini Lab Stand Inst. 2007; 27(1): 1-177.
20. Doudi M, Naghsh N, Setorki M. Comparison of the effects of silver nanoparticles on
pathogenic bacteria resistant to beta-lactam antibiotics (esbls) as a prokaryote model and Wistar
rats as a eukaryote model. J Med Sci Monit Basic Res. 2013; 19(1): 103-110.
21. Bland MV, Ismail S, Heinemann JA, Keenan JI. The action of Bismuth against Helicobacter
pylori Mimics but is not caused by intracellular iron deprivation. J Antimicrob Agents
Chemother. 2004; 48(6): 1983-1988.
22. Fujiwara T, Hoshino T, Ooshima SH. Differential and quantative analyses of mRNA
expression of glucosyltransferases from Streptococcus mutans MT8148. J Dent Res. 2002; 81
(2): 109-113.
23. Gericke M, Pinches A. Microbial production of gold nanoparticles. Gold bull. 2006; 39(1):
22-28.
24. Shankar SS, Rai A, Ahmad A. Sastry M. Rapid synthesis of Au, Ag and bimetallic Au
core- Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J coll inter sci. 2004;
275(2): 496-502.
25. Salata OV. Application of nanoparticles in biology and medicine. J Nanobiotechnol. 2004; 2
(1): 3-9.
26. Narayanan K.B, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv
Coll Inter Sci. 2010; 156(2): 1-13.
27. Nanda A, Saravanan M. Biosynthesis of Silver nanopertieles from staphylococcus aureus and
its antimicrobial activity agaist MRSA and MRSE. Nanomed. 2009; 5(4): 452-456.
28. Tarjoman Z, Ganji SM, Mehrabian S. Synergistic effect of the bismuth nanoparticles along
with antibiotics on PKS positive Klebsiella pneumonia isolates from colorectal cancer patients;
comparison with quoinolon antibiotics. J Med Medi Sci. 2015; 3(9): 387-393.
29. Saifuddin N, Wong CW, Nur Yasumira AA. Rapid biosynthesis of silver nanoparticles using
culture supernatant of bacteria with microwave irradiation. J Chem. 2008; 6(1): 61-70.
30. Fuad H, Li H, Hongjie L, Yanmei D, Baoting Y, El-Shakh A, Abbas G, Jianchu M. Synthesis
and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus
subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity. Art Cell
Nano Bio. 2017; 45(7): 1369-1378.
31. Shams U, Abad A, Mohd A, Ashraf M, Hena K. Green synthesis of Zno nanoparticles using
Bacillus Subtilis and their catalytic performance in the one-pot synthesis of steroidal
thiophenes. Green synthesis of ZnO nanoparticles. Eur Chem Bull. 2014; 3(9): 939-945.
32. Deljou A, Goudarzi S. Green extracellular synthesis of the silver nanoparticles using
Thermophilic Bacillus Sp. AZ1 and its antimicrobial activity against several human
pathogenetic bacteria. Iran J Biotech. 2016; 14(2): 25-32.
33. Wen-Ru,Li, Xiao-Bao Xie, Qing-Shan Shi,Hai-Yan Zeng,You-Sheng OU-Yang Antibacterial
activity and mechanism of silver nanoparticles Escherichia coli. Appl Micro Bio. 2010; 85(4):
1115-1122.
34. Abdulkadir MNJ, Safanah AF, Jehan ASS. Mohammed FAM, Mustafa TM. Study the
antibacterial effect of bismuth oxide and tellurium nanoparticles. Int J Chem Biomole Sci.
2015; 1(3)
_||_
stearothermophilus using gamma radiation and their antimicrobial activity. World Appl Sci J.
2013; 22(1): 1-16.
2. Iravani S, Korbekandi H, Mirmohammadi S, Zolfaghari B. Synthesis of silver nanoparticles:
chemical, physical and biological methods. Res Pharm Sci. 2014; 9(6): 385.
3. Gudepalya RR, Mallappa KS, Uma RS, Ghasemzadeh A. Nanoparticles: alternatives against
drug-resistant pathogenic microbes. Molecules. 2016; 21(7): 836.
4. Das VL, Thomas R, Varghese RT, Soniya E, Mathew J, Radhakrishnan E. Extracellular
synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area.
Biotechnol. 2014; 4(2): 121-126.
5. Prasad K, Kulkarin AMR. Lactobacillus assisted synthesis of titanium nanoparticles. List
Nanoscale Res Lett. 2007; 2(5): 248-250.
6. Pourali P, Yahyaei B. Biological production of silver nanoparticles by soil isolated bacteria
and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. J
Trace Elem Med Biol. 2016; 34(3): 22-31.
7. Briand GG, Burford N. Bismuth compounds and preparations with biological or medicinal
relevance. Chem Rev. 1999; 99(9): 2658-2601.
8. Leontie L, Caraman M, Alexe M, Harnagea C. Structural and optical characteristics of bismuth
oxide thin films. Surf Sci. 2002; 507-510: 480-485.
9. Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, Diaz D, Zumeta-Dube I,
Arevalo-Nino K, Cabral-Romero C. Bismuth oxide aqueous colloidal nanoparticles inhibit
Candida albicans growth and biofilm formation. Int J Nanome. 2013; 8(3): 1645-1652.
10. Rabin N, Zheng Y, Opoku TC, Bonsu E, Sintim HO. Biofilm formation mechanisms and
targets for developing anti-biofilm agents. Future Med Chem. 2015; 7(4): 493-512.
11. Basaglia M, Ali MY, Rahman MM, Rahman A, Rahman MM, Sultana T, Casella S. Isolation
of Bacillus spp. from soil and an evaluation of their sensivity towards different extracts and
essential oils of cumin. J Agr Sci Tech. 2014; 16(1): 623-633.
12. Whitman WB, Goodfellow M, Kamperfer P. Bergey's manual of systematic bacteriology. 2nd
ed. New York, NY. Parts of A and B, Springer-Vertlag 2012.
13. Nazari P, Dowlatabadi-Bazaz R, Mofid MR, Pourmand MR, Daryani NE, Faramarzi MA,
Sepehrizadeh Z, Shahverdi AR. The antimicrobial effects and metabolomic footprinting of
carboxyl-capped bismuth nanoparticles against Helicobacter pylori. Appl Biochem Biotechnol.
2013; 172(2): 570-579.
14. Vidhya LD, Roshmi T , Rintu TV , Soniya EV, Jyothis M, Radhakrishnan EK. Extracellular
synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. J
Biotechnol. 2014; 4(2): 121-126.
15. Ninfa, Alexander J, Ballou, David P, Benore, Marilee. Fundamental laboratory approaches for
biochemistry and biotechnology 2nd edition. Wiley; 2009.
16. Jing M, Jia C, Liangsheng Q, Juanqin X. Effect of different calcination temperatures on the
structural and photocatalytic performance of Bi-TiO2/SBA-15. Int J Photo. 2013; 10.
17. Ranjbar R, Owlia P, Saderi H, Owlia P, Saderi H, Mansouri S, Jonaidi-Jafari N, Izadi M,
Farshad S, Arjomandzadegan M. Characterization of Pseudomonas aeruginosa strains isolated
from burned patients hospitalized in a major burn center in Tehran, Iran. Act Med Iran. 2011;
49(10): 675-679.
18. Chapaval L, Moon DH, Gomes JE, Duarte FR, Tsai SM. An alternative method for
Staphylococcus aureus DNA isolation. Arq Bras Med Vet Zootec. 2008; 60(2): 299-306.
19. Wikler MA. Performance standards for antimicrobial sensitivity testing: Seventeenth
Informational Supplement. Wayne PA: Clini Lab Stand Inst. 2007; 27(1): 1-177.
20. Doudi M, Naghsh N, Setorki M. Comparison of the effects of silver nanoparticles on
pathogenic bacteria resistant to beta-lactam antibiotics (esbls) as a prokaryote model and Wistar
rats as a eukaryote model. J Med Sci Monit Basic Res. 2013; 19(1): 103-110.
21. Bland MV, Ismail S, Heinemann JA, Keenan JI. The action of Bismuth against Helicobacter
pylori Mimics but is not caused by intracellular iron deprivation. J Antimicrob Agents
Chemother. 2004; 48(6): 1983-1988.
22. Fujiwara T, Hoshino T, Ooshima SH. Differential and quantative analyses of mRNA
expression of glucosyltransferases from Streptococcus mutans MT8148. J Dent Res. 2002; 81
(2): 109-113.
23. Gericke M, Pinches A. Microbial production of gold nanoparticles. Gold bull. 2006; 39(1):
22-28.
24. Shankar SS, Rai A, Ahmad A. Sastry M. Rapid synthesis of Au, Ag and bimetallic Au
core- Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J coll inter sci. 2004;
275(2): 496-502.
25. Salata OV. Application of nanoparticles in biology and medicine. J Nanobiotechnol. 2004; 2
(1): 3-9.
26. Narayanan K.B, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv
Coll Inter Sci. 2010; 156(2): 1-13.
27. Nanda A, Saravanan M. Biosynthesis of Silver nanopertieles from staphylococcus aureus and
its antimicrobial activity agaist MRSA and MRSE. Nanomed. 2009; 5(4): 452-456.
28. Tarjoman Z, Ganji SM, Mehrabian S. Synergistic effect of the bismuth nanoparticles along
with antibiotics on PKS positive Klebsiella pneumonia isolates from colorectal cancer patients;
comparison with quoinolon antibiotics. J Med Medi Sci. 2015; 3(9): 387-393.
29. Saifuddin N, Wong CW, Nur Yasumira AA. Rapid biosynthesis of silver nanoparticles using
culture supernatant of bacteria with microwave irradiation. J Chem. 2008; 6(1): 61-70.
30. Fuad H, Li H, Hongjie L, Yanmei D, Baoting Y, El-Shakh A, Abbas G, Jianchu M. Synthesis
and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus
subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity. Art Cell
Nano Bio. 2017; 45(7): 1369-1378.
31. Shams U, Abad A, Mohd A, Ashraf M, Hena K. Green synthesis of Zno nanoparticles using
Bacillus Subtilis and their catalytic performance in the one-pot synthesis of steroidal
thiophenes. Green synthesis of ZnO nanoparticles. Eur Chem Bull. 2014; 3(9): 939-945.
32. Deljou A, Goudarzi S. Green extracellular synthesis of the silver nanoparticles using
Thermophilic Bacillus Sp. AZ1 and its antimicrobial activity against several human
pathogenetic bacteria. Iran J Biotech. 2016; 14(2): 25-32.
33. Wen-Ru,Li, Xiao-Bao Xie, Qing-Shan Shi,Hai-Yan Zeng,You-Sheng OU-Yang Antibacterial
activity and mechanism of silver nanoparticles Escherichia coli. Appl Micro Bio. 2010; 85(4):
1115-1122.
34. Abdulkadir MNJ, Safanah AF, Jehan ASS. Mohammed FAM, Mustafa TM. Study the
antibacterial effect of bismuth oxide and tellurium nanoparticles. Int J Chem Biomole Sci.
2015; 1(3)