Abstract :
Water injection is one of the EOR methods which has shown great potential in recent years. The water flooding process is more effective when the injected water is enriched by chemicals which improves the oil recovery by reducing interfacial tension )IFT( and alternating wettability. In this work four long alkyl chain imidazolium based ionic liquids )ILs( including Octyl, Decyl, Dodecyl, and Tetradecyl methylimidazolium Chloride were synthesized and characterized by 1HNMR and elemental analysis. Furthermore, some physicochemical properties were investigated for studied ILs as a function of temperature. The synthesized ILs were examined as additives in injected water to reduce the IFT in water flooding process. The critical micelle concentration )CMC( point and IFT of enriched sea water by ILs/crude oil were measured as a function of ILs concentration. The results show that ILs can be good candidates for EOR technology due to their significant behavior in IFT reduction and their low consumption. According to obtained results, as the alkyl chain was longer, the CMC point and IFT values were lower. ]C14mim]]Cl] was the most effective ILs which 50 ppm of this ILs, reduced the IFT values to 0.65 mN.m-1.
References:
[1] Mandal, A.; Samanta, A.; Bera, A.; Ojha, K.; Industrial & Engineering Chemistry Research 49, 12756–12761, 2010.
[2] Bin-Dahbag, M.S.; AlQuraishi, A.A.; Benzagouta, M.S.; J. Petroleum Exploration and Production Technology 5, 353-361, 2015.
[3] Lago, S.; Francisco, M.; Arce, A.; Soto, A.; Energy Fuels 27, 5806−5810, 2013.
[4] Nguyen, D.; Sadeghi, N; Houston, C.; Energy Fuels 26, 2742−2750, 2012.
[5] Joonaki, E.; Ghanaatian, S; Zargar, G.; Iranian Journal of Oil & Gas Science and Technology 1, 37-42, 2012.
[6] Hezave, A.Z; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B; J. Molecular Liquids 187, 83-89, 2013.
[7] Sakthivel, S.; Gardas, R.L.; Sangwai, J.S.; Energy Fuels 30, 2514–2523, 2016.
[8] Bin-Dahbag, M.S.; Al-Quraishi, A.A.; Benzagouta, M.S.; Kinawy, M.M.; Al-Nashef, I.M.; Al-Mushaegeh, E.; J. Petroleum and Environmental Biotechnology 4, 165-171, 2014.
[9] Lago, S.; Rodrı´guez, H.; Khoshkbarchi, M.K.; Soto, A.; RSC Advances 2, 9392–9397, 2012.
[10] Sakthivel, S.; Velusamy, S.; Nair, V.C.; Sharma, T.; Sangwai, J.S; Fuel. 191, 239–250, 2017.
[11] Chukwudeme, E.A; Hamouda, A.A; Energies 2, 714-737, 2009.
[12] Xie, D.; Hou, J.; Doda, A.; Trivedi, J.; Energy Fuels 30, 4583−4595, 2016.
[13] Zhang, H.; Chen, G.; Dong, M.; Zhao, S.; Liang, Z.; Energy Fuels 30, 3860−3869, 2016.
[14] Riahinezhada, M.; Romero-Zerónb, L.; McManusa, N.; Penlidis, A.; Fuel 203, 269–278, 2017.
[15] Bikkina, P.K.; Uppaluri, R.; Purkait, M.K.; J. Petroleum Science and Technology 31, 755–762, 2013.
[16] Hezave, A.Z.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B.; Fluid Phase Equiliba 360, 139– 145, 2013.
[17] Abdi, M.; Moradi, S.; Habibniya, B.; Kord, S.; International Journal of Science & Emerging Technologies 7, 302-308, 2014.
[18] Hezave, A.Z.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B.; Colloids and Surfaces A: Physicochemical and Engineering Aspects 421, 63–71, 2013.
[19] Chegenizadeh, N.; Saeedi, A.; Quan, X.; Petroleum 11, 197-211, 2016.
[20] Rogers, R.D.; Voth, G.A.; Accounts of Chemical Research 40, 1077-1078, 2007.
[21] Hou, Y.; Ren, Y.; Peng, W.; Ren, S.; Wu, W.; Industrial & Engineering Chemistry Research 52, 18071-18075, 2013.
[22] Jose-Alberto, M.H.; Aburto, J.; “Current Knowledge and Potential Applications of Ionic Liquids in the Petroleum Industry”, in “ Ionic Liquids: Applications and Perspectives”, Kokorin, A. Ed.; InTech Publications, Rijeka, Croatia, 2011.
[23] Smiglak, M.; Pringle, J.M.; Lu, X.; Han, L.; Zhang, S.; Gao, H.; MacFarlane, D.R.; Rogers, R.D.; Chemical Communications 50, 9228-9250, 2014.
[24] Torimoto, T.; Tsuda, T.; Okazaki, K.; Kuwabata, S.; Advanced Materials 22, 1196-1221, 2010.
[25] Weil, D.; Ivaska, A.; Analytica Chimica Acta 607, 126-135, 2008.
[26] Siedlecka, E.M.; Czerwicka, M.; Stolte, S.; Stepnowski, P.; Current Organic Chemistry 15, 1974-1991, 2011.
[27] Hekayati, J.; Roosta, A.; Javanmardi, J.; J. Molecular Liquids 225, 118-126, 2017.
[28] Dean, P.M.; Pringle, J.M.; MacFarlane, D.R.; Physical Chemistry Chemical Physics 12, 9144-9153, 2010.
[29] Zech, O.; Stoppa, A.; Buchner, R.; Kunz, W.; J. Chemical & Engineering Data 55, 1774-1778, 2010.
[30] Benzagouta, M.S.; AlNashef, I.M.; Karnanda, W.; Khidir, K.A.; Korean Journal of Chemical Engineering 11, 2108-2117, 2013.
[31] Wasserscheid, P.; Welton, T.; “In Ionic Liquids in Synthesis”, 2nd Edition, Willey Publications, New York, 2007.
[32] Shamsipur, M.; Miranbeigi, A. A; Teymori, M.; Pourmortazavi, S.M.; Irandoust, M.; J. Molecular Liquids 157, 43-50, 2010.
[33] Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A.B.H.; Watanabe, M.; J. Physical Chemistry B, 109, 6103-6110, 2005.
[34] Moosavi, M.; Khashei, F.; Sharifi, A.; Mirzaei, M.; Industrial & Engineering Chemistry Research 55, 9087-9099, 2016.
[35] Yan, X.J.; Li, S.N.; Zhai, Q.G.; Jiang, Y.C.; Hu, M.C.; J. Chemical & Engineering Data 59, 1411-1422, 2014.
[36] Hezave, A.Z.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B.; J. Dispersion Science and Technology 35, 1483–1491, 2014.
_||_