Evaluation of methylcellulose role in thermosensitive hydrogel structure as injectable system for tissue engineering application: fabrication and characterization
Subject Areas :Sogol Motalebi Tala Tapeh 1 , Mazyar Sharifzadeh Baei 2 , Saeed Heydari Keshel 3
1 - PhD.student in Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
2 - Associate Prof. in Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
3 - Assistant Prof. in Department of Tissue Engineering and Applied Cell Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Keywords: Biocompatibility, Soft tissues engineering, Thermosensitive hydrogel, Methylcellulose,
Abstract :
One of the challenges in tissue engineering is polymer material selection and design of a suitable structure for hydrogels. In this study, N-isopropylacrylamide/Acrylic acid/N-Acryloxysuccinicimide/2-Hydroxyethyl methacrylate-poly lactide hydrogel (NIPAAm/AAC/NAS/HEMAPLA) was prepared with various molar ratio by ring-opening polymerization method to fabricate hydrogel substrate with properties of injectability, thermosensitive, physical and mechanical similar of soft tissues. The hydrogel with the ratio of 80/5/5/10 was selected as ideal groups (group 1). Methylcellulose was also used in the hydrogel structure to improve quality of the hydrogel (group 4). Then, the physicochemical, mechanical and biological properties of the hydrogels were evaluated. The results showed, molar ratio of polymers not only plays an important role in enhancing hydrophilicity, porosity, elastic modulus-like soft tissues, and cell proliferation, but also the presence of methyl cellulose lead to the improvement of the mentioned properties. So that, hydrogels of groups 1 and 4 provide an ideal environment for improving cellular activities due to hydrophilicity of more than 51%, elastic modulus-like cardiac tissues (68.1 kPa and 79.22 kPa, respectively), biocompatibility above 90%, with compared to other groups. It seems that the mentioned hydrogels (1 and 4 groups) can imitate soft tissue properties such as cardiac and be effective to regenerate and repair. In the other hand, these thermosensitive and inject ability hydrogels lead to a uniform mixing of cells and growth factors, as well as can apply to the cell therapy of soft tissue.
[1] Thomas, D; Brien, T.O.; Pandit, A.; Adv. Mater. 30, 1870006-1870016, 2018.
[2] Waliullah,M. S.; Gan, Y. X.; Chen, A.D.; Gan, R.N.; Materials 2, 6351-6358, 2018.
[3] Hasan, A.A.; Khattab, M.A. Islam, K.A.; Hweij, J.; Zeitouny, R.; Waters, M.; Sayegh, M.M.; Paul, A.; Adv. Sci. 2, 1500122-1500126, 2015.
[4] Li, Z.; Fan, Z.Y.; Xu, H.; Niu, X.; Xie, Z.; Guan, J.; ACS Appl. Mater. Interfaces. 8, 15948–15957, 2016.
[5] Wang, F.Z.; Li, M.; Khan, K.; Tamama, P.; Kuppusamy, W.R.; Wagner, C.K.; Guan, J. Acta Biomater. 6, 1978–1991, 2010.
[6] French, K.M.; Boopathy, A.V.; DeQuach, J.A.; Chingozha, L.; Lu, H.; Christman, K.L.; Acta Biomater. 8, 4357–4364, 2012.
[7] Martino, S.F.; Angelo, D.; Armentano, I.J.; Kenny, M.; Orlacchio, A.; Biotechnol. Adv. 30, 338–351, 2012.
[8] Tang, Y.; Wang, X.; Li, Y.; Lei, M.; Du, Y.; Kennedy, J.F.; Carbohydr. Polym. 82, 833–841, 2010.
[9] Reynolds, D.B.; Repperger, D.W. ; Phillips, C.A.; Ann. Biomed. Eng. 31, 310–317, 2003.
[10] Taşdelen, B.N.; Kayaman-Apohan, Z.; MISIrlI, O.; Baysal, B.M.; J. Appl. Polym. Sci. 97, 1115–1124, 2005.
[11] Ullah, F.M.; Othman, B.H.; Javed, F.Z.; Akil, H.M.; Mater. Sci. Eng. C. 57, 414–433, 2015.
[12] Baei, P., Jalili-Firoozinezhad, S.S.; Rajabi-Zeleti, M.; Tafazzoli-Shadpour, H.; Aghdami, N.; Mater. Sci. Eng. C. 63, 131–141, 2016..
[13] Sepantafar, M.R.; Maheronnaghsh, H.; Mohammadi, S.; Rajabi-Zeleti, N.; Annabi, N.; Baharvand, H.; Biotechnol. Adv. 34, 362–379, 2016.
[14] Fathi, A.; Mithieux, S.M.; Wei, H.; Chrzanowski, W.P.; Valtchev, A.S.; Dehghani, F.; Biomaterials 35, 5425–5435, 2014.
[15] Yoshizumi, T.; Zhu, Y.; Jiang, H.; D’Amore, A.; Sakaguchi, H.; Wagner, W.R.; Biomaterials 83, 182–193, 2016.
[16] Morkhande, V.K.; Pentewar, R. S.; Gapat, V.S.; Sayyad, R.; Sandip, K.; Indo Am. J. Pharm. Res. 6, 4678–4689, 2016.
[17] Deng, C.; Zhu, H.; Li, J.; Feng, C.; Yao, Q.; Wang, L.; Chang, J.; Theranostics 8, 1940–1955 , 2018.
[18] Chen,G.; Kawazoe, N.; Pharmaceutics 8, 171-191, 2018.
[19] Madry, H.P.; Cucchiarini, M.; Cartilage 2, 201–225, 2011.
[20] Xu,Y.; Li, Z.; Li, X.; Fan, Z.; Liu, Z.; Xie, X.; Guan, J.; Acta Biomater. 26, 23–33, 2015.
[21] Smith, A.W.; Hoyne, J.D.; Nguyen, P.K.; McCreedy, D.A.; Aly, H.; Efimov, I.R.; Rentschler, S.; Elbert, D.L.; Biomaterials 34, 6559–6571, 2013.
[22] Kondiah, P.; Choonara,Y.; Kondiah,P.; Marimuthu,T.; Kumar,P.; Pillay,V.; Molecules 21, 1580-1586, 2016.
[23] Stabenfeldt, S.E.; García, A.J.; LaPlaca, M.C.; J. Biomed. Mater. Res. Part A. 77A, 718–725, 2006.
[24] Chalanqui, M.J.; Pentlavalli,S.; McCrudden,C.; Chambers,P.; McCarthy,H.O.; Mater. Sci. Eng. C. 95, 409–421, 2017.
[25] Yang, J.; IOP Conf. Ser. Mater. Sci. Eng. 504, 12013-12018, 2019.
[26] Miao, L.; Hu, J.; Lu, M.; Tu,Y.; Chen, X.; Li,Y.; Lin, S.; Li, F.; Carbohydr. Polym. 137, 433–440, 2016.
[27] Yang, H.R.; van Ee, J.; Timmer, K.E.; Craenmehr, G.M.; Huang, J.H.; Öner, F.C.; Dhert, W.J.; Kragten, H.M.; Willems, N.G.; Papen-Botterhuis, N.E.; Creemers, L.B.; Acta Biomater. 23, 214–228, 2015.
[28] Li, Z.; Fan, Z.; Xu,Y.; Lo,W.; Wang, X.; Niu, H.; Khan,M.; Guan, J.; ACS Appl. Mater. Interfaces. 8, 10752–10760, 2016.
[29] Guan, J.; Hong,Y.; Ma, Z.; Wagner,W.R.; Biomacromolecules 9, 1283–1292, 2008.
[30] Luo, K.; Yang,Y.; Shao, Z.; Adv. Funct. Mater. 26, 872–880, 2016.
[31] Sun, W.; Incitti,T.; Migliaresi, C.; Quattrone, A.; Casarosa, S.; J. Tissue Eng. Regen. Med. 11, 1532–1541, 2017.
[32] Chang, C.; Zhang, L.; Carbohydr. Polym. 84, 40–53, 2011.
[33] Gold, G.T.; Varma,D.M.; Taub, P.J.; Nicoll, S.B.; Carbohydr. Polym. 134, 497–507, 2015.
[34] Rokhade, A.P.; Shelke, N.B.; Patil,S.A.; Aminabhavi,T.M.; Carbohydr. Polym. 69, 678–687, 2007.
[35] Bai, Y.; Chen, B.; Xiang, F.; Zhou, J.; Wang, H.; Suo, Z.; Appl. Phys. Lett. 105, 151903-151909, 2014.
[36] Zhou, J.; Zhang, B.; Liu, X.; Shi, L.; Zhu, J.; Wei, D.; Zhong, J.; Sun, G.; He, D.; Carbohydr. Polym. 143, 301–309, 2016.
[37] Dehghani, S.; Rasoulianboroujeni, M.; Ghasemi, H.; Keshel, S.H.; Nozarian, Z.; Hashemian, M.; Zarei-Ghanavati, N.M.; Latifi, G.; Ghaffari,R.; Cui, Z.; Ye, H.; Tayebi, L.; Biomaterials 174, 95–112, 2018.
[38] Parmar, I.A.; A. Shedge, S.M.; Badiger, V.P.; Wadgaonkar, P.; RSC Adv. 7, 5101–5110, 2017.
[39] Li, X.; Zhou, J.; Liu, Z.; Chen, J.; Lü, S.; Sun, H.; Li, J.; Lin, Q.; Yang, B.; Duan, C.; Xing, M.M.; Wang, C.; Biomaterials, 35(22), 5679–5688, 2014.
[40] Mehrasa, M.M.; Asadollahi, A.; Ghaedi, K.; Salehi, H.; Arpanaei, A.; Int. J. Biol. Macromol. 79, 687–695, 2015.
[41] Meng, Z.X.; Xu, X.X.; Zheng, W.; Zhou, H.M.; Li, L.; Zheng,Y.F.; Colloids Surfaces B Biointerfaces 84, 97–102, 2011.
[42] Ramier, J.; Bouderlique, T.; Stoilova, O.; Manolova, N.I.; Langlois,V.; Renard, E.; Albanese, P.; Grande, D.; Mater. Sci. Eng. C. 38, 161–169, 2014.
[43] Rosa,V.; Xie, H.; N. Dubey, T.T.; Madanagopal, S.S.; Morin, J.L.; Castro Neto, A.H.; Dent. Mater. 32, 1019–1025, 2016.
[44] Arima,Y.; Iwata, H.; Biomaterials 28, 3074–3082, 2007.
[45] Crawford, R.J.; Ivanova, E.P.; Webb, H.K.; Superhydrophobic Surfaces 14, 27–49, 2015.
[46] Menzies, K.L.; Jones, L.; Optom. Vis. Sci. 87, 387–399, 2010.
[47] Shi,X.; Lu, S.; Xu, W.; Mater. Chem. Phys. 134, 657–663, 2012.
[48] Sengupta, P.; Prasad, B.L.V.; Regen. Eng. Transl. Med. 4, 75-91, 2018.
[49] Laurencin,C.; Nair, L.; "Nanotechnology and Regenerative Engineering", CRC Press, Boca Raton, 2014.
[50] Li, Z.; Guo, X.; Palmer, A.F.; Das, H.; Guan, J.; Acta Biomater. 8, 3586–3595, 2012.
[51] Chaudhuri, R.; Ramachandran, M.; Moharil, P.; Harumalani, M.; Jaiswal, A.K.; Mater. Sci. Eng. C. 79, 950–957, 2017.
[52] Billiet, T;. Vandenhaute, M.; Schelfhout, J.; Van Vlierberghe, S.; Dubruel, P.; Biomaterials 33, 6020–6041, 2012.
[53] Pezeshki Modaress, M.; Mirzadeh,H.; Zandi, M.; Iran. Polym. J. 21, 191–200, 2012.
[54] Madden, L.R.; Mortisen, D.J.; Sussman, E.M.; Dupras, S.K.; Murry, C.E.; Ratner, B.D.; Proc. Natl. Acad. Sci. 107, 15211–15216, 2010.
[55] Jose, M.; Thomas, V.K.; Johonson, D.; Nyairo, E.; Acta Biomater. 5, 305–315, 2009.