Investigating the effect of the pesticide obtained from straw by the pyrolysis process on the Pseudomonas aeruginosa and Pectobacterium carotovorum microorganisms and the Macrophomina phaseolina fungus
Subject Areas :Fatemeh Khojastehrad 1 , Mortaza Gholizadeh 2 , Reza Khakvar 3
1 - Ph.D. Student of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
2 - Associat Prof. of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
3 - Associat Prof. of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
Keywords: Pesticide, pyrolysis, phenolic compounds, Bio-oil,
Abstract :
In this research, the possibility of producing pesticide from straw by using pyrolysis process at 500 °C was investigated. In the pyrolysis products, compounds such as phenol and carboxylic acid as well as highly polar fatty acids such as hexadecanoide and octadecanoide were identified by gas chromatography-mass spectrometer. The separation of these compounds during bio-oil production can provide a source of effective pesticide compounds. Therefore, the aqueous parts of the bio-oil of straw were separated. After optimizing the extraction of pesticide in water, its pesticidal properties was investigated on the Pseudomonas aeruginosa and Pectobacterium carotovorum microorganisms, and the Macrophomina phaseolina by the direct agar disk method. On Pectobacterium carotoverum, larger halo radii were formed by the pesticide with 0.57 weight percentage, which indicates the greater inhibitory property of this weight percentage of the pesticide. By using a high-performance liquid chromatography device, it was determined that the aqueous parts contain many phenolic compounds. So, it can be concluded that the aqueous extract extracted from straw bio-oil can be a pesticide with the potential to replace artificial and synthetic pesticides.
[1] Al-Saleh, I. A; Journal of Environmental Pathology, Toxicology and Oncology 13(3), 151-161, 1994.
[2] Kaur, R.; Mavi, G.K.; Raghav, S.; Khan, I; Int. J. Curr. Microbiol. Appl. Sci. 8(3), 1889-1897, 2019.
[3] Bhoi, P.R.; Ouedraogo, A.S.; Soloiu, V., Quirino, R; Renewable and Sustainable Energy Reviews 121, 109676, 2020.
[4] Booker, C.J.; Bedmutha, R., Vogel, T.; Gloor, A.; Xu, R.; Ferrante, L.; Briens, C; Industrial & Engineering Chemistry Research 49(20), 10074-10079, 2010.
[5] Fagbemi, L.; Khezami, L.; Capart, R; Applied energy 69(4), 293-306, 2001.
[6] Onay, O.; Kockar, O.M; Renewable energy 28(15), 2417-2433, 2003.
[7] Ahemad, M.; Khan, M.; Acta Microbiologica et Immunologica Hungarica 58(3), 169-187, 2011.
[8] Sarah, S.N.,; Sijam, K.; Omar, D; Int J Appl Biol Pharmac Technol 3, 246-252, 2012.
[9] Laresgoiti, M.F.; Caballero, B.M.; de Marco, I.; Torres, A.; Cabrero, M.A., Chomón, M.J.; Journal of Analytical and Applied Pyrolysis 71(2), 917-934, 2004.
[10] Tsai, W.T.; Lee, M.K.; Chang, D.Y; Journal of Analytical and Applied Pyrolysis 76(1-2), 230-237, 2006.
[11] Fu, P.; Hu, S.; Xiang, J.; Li, P.; Huang, D.; Jiang, L.; Zhang, J.; Journal of Analytical and Applied Pyrolysis 88(2), 117-123, 2010.
[12] Pütün, A.E.; Apaydın, E.; Pütün, E; Energy 29(12-15), 2171-2180, 2004.
[13] Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G.; “The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules”, Academic Press, New York, 1991.
[14] Salavati, S.; Zhang, C.; Zhang, S.; Liu, Q.; Gholizadeh, M.; Hu, X.; Journal of Environmental Management 250, 109467, 2019.
[15] Iglesias, M.J.; Jimenez, A.; Laggoun-Defarge, F.; Suarez-Ruiz, I.; Energy and Fuels 9(3), 458-466, 1995.
[16] Christensen, T. (Ed.); “Solid Waste Technology and Management”, John Wiley & Sons, UK, 2011.
[17] Altay, A.; Degirmenci, S.; Korkmaz, M.; Cankaya, M.; Koksal, E; Journal of Food Measurement and Characterization 12(4), 2936-2945, 2018.
[18] Sochor, J.; Zitka, O.; Skutkova, H.; Pavlik, D.; Babula, P.; Krska, B.; Kizek, R; Molecules 15(9), 6285-6305, 2010.
[19] Zhang, S.; Dong, Q.; Zhang, L.; Xiong, Y; Bioresource technology 199, 352-361, 2016.
[20] Basu, P.; “Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory”, Academic Press, Elsevier, UK, 2018.
[21] Khuenkaeo, N.; Phromphithak, S.; Onsree, T.; Naqvi, S.R.; Tippayawong, N.; PlOS ONE, 16(7), e0254485, 2021.
_||_
[1] Al-Saleh, I. A; Journal of Environmental Pathology, Toxicology and Oncology 13(3), 151-161, 1994.
[2] Kaur, R.; Mavi, G.K.; Raghav, S.; Khan, I; Int. J. Curr. Microbiol. Appl. Sci. 8(3), 1889-1897, 2019.
[3] Bhoi, P.R.; Ouedraogo, A.S.; Soloiu, V., Quirino, R; Renewable and Sustainable Energy Reviews 121, 109676, 2020.
[4] Booker, C.J.; Bedmutha, R., Vogel, T.; Gloor, A.; Xu, R.; Ferrante, L.; Briens, C; Industrial & Engineering Chemistry Research 49(20), 10074-10079, 2010.
[5] Fagbemi, L.; Khezami, L.; Capart, R; Applied energy 69(4), 293-306, 2001.
[6] Onay, O.; Kockar, O.M; Renewable energy 28(15), 2417-2433, 2003.
[7] Ahemad, M.; Khan, M.; Acta Microbiologica et Immunologica Hungarica 58(3), 169-187, 2011.
[8] Sarah, S.N.,; Sijam, K.; Omar, D; Int J Appl Biol Pharmac Technol 3, 246-252, 2012.
[9] Laresgoiti, M.F.; Caballero, B.M.; de Marco, I.; Torres, A.; Cabrero, M.A., Chomón, M.J.; Journal of Analytical and Applied Pyrolysis 71(2), 917-934, 2004.
[10] Tsai, W.T.; Lee, M.K.; Chang, D.Y; Journal of Analytical and Applied Pyrolysis 76(1-2), 230-237, 2006.
[11] Fu, P.; Hu, S.; Xiang, J.; Li, P.; Huang, D.; Jiang, L.; Zhang, J.; Journal of Analytical and Applied Pyrolysis 88(2), 117-123, 2010.
[12] Pütün, A.E.; Apaydın, E.; Pütün, E; Energy 29(12-15), 2171-2180, 2004.
[13] Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G.; “The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules”, Academic Press, New York, 1991.
[14] Salavati, S.; Zhang, C.; Zhang, S.; Liu, Q.; Gholizadeh, M.; Hu, X.; Journal of Environmental Management 250, 109467, 2019.
[15] Iglesias, M.J.; Jimenez, A.; Laggoun-Defarge, F.; Suarez-Ruiz, I.; Energy and Fuels 9(3), 458-466, 1995.
[16] Christensen, T. (Ed.); “Solid Waste Technology and Management”, John Wiley & Sons, UK, 2011.
[17] Altay, A.; Degirmenci, S.; Korkmaz, M.; Cankaya, M.; Koksal, E; Journal of Food Measurement and Characterization 12(4), 2936-2945, 2018.
[18] Sochor, J.; Zitka, O.; Skutkova, H.; Pavlik, D.; Babula, P.; Krska, B.; Kizek, R; Molecules 15(9), 6285-6305, 2010.
[19] Zhang, S.; Dong, Q.; Zhang, L.; Xiong, Y; Bioresource technology 199, 352-361, 2016.
[20] Basu, P.; “Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory”, Academic Press, Elsevier, UK, 2018.
[21] Khuenkaeo, N.; Phromphithak, S.; Onsree, T.; Naqvi, S.R.; Tippayawong, N.; PlOS ONE, 16(7), e0254485, 2021.