Improved TLBO and JAYA algorithms to solve new fuzzy flexible job-shop scheduling problems
Subject Areas : MetaheuristicsRaviteja Buddala 1 , Siba Sankar Mahapatra 2 , Manas Ranjan Singh 3 , Bhanu Chandar Balusa 4 , Purusotham Singamsetty 5 , Venkata Phanikrishna Balam 6
1 - School of Mechanical Engineering, Vellore Institute of Technology, Vellore.
2 - Department of Mechanical Engineering, National Institute of Technology Rourkela
3 - Department of Basic Sciences and Humanities, Silicon Institute of Technology
4 - School of Computer Science and Engineering, Vellore Institute of Technology, Chennai
5 - Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore.
6 - School of Computer Science and Engineering, Vellore Institute of Technology, Vellore,
Keywords:
Abstract :
[1] Apornak, A., Raissi, S., & Pourhassan, M. R. (2021). Solving flexible flow-shop problem using a hybrid multi criteria Taguchi based computer simulation model and DEA approach. Journal of Industrial and Systems Engineering, 13(2), 264-276.
[2] Balin, S. (2011). Parallel machine scheduling with fuzzy processing times using a robust genetic algorithm and simulation. Information Sciences, 181(17), 3551-3569. doi: https://doi.org/10.1016/j.ins.2011.04.010
[3] BORTOLAN, G., & DEGANI, R. (1993). A review of some methods for ranking fuzzy subsets Readings in Fuzzy Sets for Intelligent Systems (pp. 149-158): Elsevier.
[4] Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research, 41(3), 157-183. doi:https://doi.org/10.1007/BF02023073
[5] Bruni, M. E., Beraldi, P., Guerriero, F., & Pinto, E. (2011). A heuristic approach for resource constrained project scheduling with uncertain activity durations. Computers & Operations Research, 38(9), 1305-1318. doi: https://doi.org/10.1016/j.cor.2010.12.004
[6] Buddala, R., & Mahapatra, S. S. (2016). An effective teaching learning based optimization for flexible job shop scheduling. Paper presented at the International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT).
[7] Buddala, R., & Mahapatra, S. S. (2018). Improved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems. Journal of Industrial Engineering International, 14(3), 555-570. doi: 10.1007/s40092-017-0244-4
[8] Buddala, R., Mahapatra, S. S., & Singh, M. R. (2021). Solving multi-objective flexible flow-shop scheduling problem using teaching-learning-based optimisation embedded with maximum deviation theory. International Journal of Industrial and Systems Engineering. doi: 10.1504/IJISE.2021.10037222
[9] Celano, G., Costa, A., & Fichera, S. (2003). An evolutionary algorithm for pure fuzzy flowshop scheduling problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(06), 655-669. doi: https://doi.org/10.1142/S0218488503002466
[10] Chaari, T., Chaabane, S., Aissani, N., & Trentesaux, D. (2014). Scheduling under uncertainty: Survey and research directions. Paper presented at the Advanced Logistics and Transport (ICALT), 2014 International Conference on.
[11] Chanas, S., & Kasperski, A. (2003). On two single machine scheduling problems with fuzzy processing times and fuzzy due dates. European Journal of Operational Research, 147(2), 281-296. doi: https://doi.org/10.1016/S0377-2217(02)00561-1
[12] Dubois, D., Fargier, H., & Fortemps, P. (2003). Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge. European Journal of Operational Research, 147(2), 231-252. doi: https://doi.org/10.1016/S0377-2217(02)00558-1
[13] Dunke, F., & Nickel, S. (2022). A multi-method approach to scheduling and efficiency analysis in dual-resource constrained job shops with processing time uncertainty. Computers & Industrial Engineering, 168, 108067.
[14] Fortemps, P. (1997). Jobshop scheduling with imprecise durations: a fuzzy approach. IEEE Transactions on Fuzzy Systems, 5(4), 557-569. doi: https://doi.org/10.1109/91.649907
[15] Gao, K.-Z., Suganthan, P. N., Pan, Q.-K., Chua, T. J., Cai, T. X., & Chong, C.-S. (2016). Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives. Journal of Intelligent Manufacturing, 27(2), 363-374. doi: https://doi.org/10.1007/s10845-014-0869-8
[16] Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of operations research, 1(2), 117-129. doi: https://doi.org/10.1287/moor.1.2.117
[17] Ghrayeb, O. A. (2003). A bi-criteria optimization: minimizing the integral value and spread of the fuzzy makespan of job shop scheduling problems. Applied Soft Computing, 2(3), 197-210. doi: https://doi.org/10.1016/S1568-4946(02)00069-8
[18] Gonzalez-Rodriguez, I., Puente, J., Vela, C. R., & Varela, R. (2008). Semantics of schedules for the fuzzy job-shop problem. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(3), 655-666. doi: https://doi.org/10.1109/TSMCA.2008.918603
[19] Gonzalez-Rodriguez, I., Vela, C. R., & Puente, J. (2007). A memetic approach to fuzzy job shop based on expectation model. Paper presented at the Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International.
[20] González-Rodríguez, I., Vela, C. R., & Puente, J. (2006). Study of objective functions in fuzzy job-shop problem. Paper presented at the InternationalConference on Artificial Intelligence and Soft Computing.
[21] Rodrıguez, I., Vela, C. R., Puente, J., & Varela, R. (2008). A new local search for the job shop problem with uncertain durations. Paper presented at the Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling.
[22] He, W., Sun, D., & Liao, X. (2013). Applying novel clone immune algorithm to solve flexible job shop problem with machine breakdown. JOURNAL OF INFORMATION &COMPUTATIONAL SCIENCE, 10(9), 2783-2797. doi: https://doi.org/10.12733/jics20101851
[23] Ishibuchi, H., & Murata, T. (1998). A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 28(3), 392-403. doi: https://doi.org/10.1109/5326.704576
[24] Jin, L., Zhang, C., Wen, X., Sun, C., & Fei, X. (2021). A neutrosophic set-based TLBO algorithm for the flexible job-shop scheduling problem with routing flexibility and uncertain processing times. Complex & Intelligent Systems, 7(6), 2833-2853.
[25] Kacem, I., Hammadi, S., & Borne, P. (2002a). Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 32(1), 1-13. doi: https://doi.org/10.1109/TSMCC.2002.1009117
[26] Kacem, I., Hammadi, S., & Borne, P. (2002b). Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Mathematics and computers in simulation, 60(3-5), 245-276. doi: https://doi.org/10.1016/S0378-4754(02)00019-8
[27] Kasperski, A. (2007). Some general properties of a fuzzy single machine scheduling problem. International Journal of Uncertainty, Fuzziness andKnowledge-Based Systems, 15(01), 43-56. doi: https://doi.org/10.1142/S0218488507004364
[28] Lei, D. (2008). Pareto archive particle swarm optimization for multi-objective fuzzy job shop scheduling problems. The International Journal of Advanced Manufacturing Technology, 37(1-2), 157-165. doi: https://doi.org/10.1007/s00170-007-0945-8
[29] Lei, D. (2010a). A genetic algorithm for flexible job shop scheduling with fuzzy processing time. International Journal of Production Research, 48(10), 2995-3013. doi: https://doi.org/10.1080/00207540902814348
[30] Lei, D. (2010b). Solving fuzzy job shop scheduling problems using random key genetic algorithm. The International Journal of Advanced Manufacturing Technology, 49(1-4), 253-262. doi: https://doi.org/10.1007/s00170-009-2379-y
[31] Lei, D. (2011). Scheduling fuzzy job shop with preventive maintenance through swarm-based neighborhood search. The International Journal of Advanced Manufacturing Technology, 54(9-12), 1121-1128. doi: https://doi.org/10.1007/s00170-010-2989-4
[32] Lei, D. (2012). Co-evolutionary genetic algorithm for fuzzy flexible job shop scheduling. Applied Soft Computing, 12(8), 2237-2245. doi: https://doi.org/10.1016/j.asoc.2012.03.025
[33] Li, R., Gong, W., & Lu, C. (2022a). A reinforcement learning based RMOEA/D for bi-objective fuzzy flexible job shop scheduling. Expert Systems with Applications, 203, 117380.
[34] Li, R., Gong, W., & Lu, C. (2022b). Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy processing time. Computers & Industrial Engineering, 168, 108099.
[35] Lin, F.-T. (2002). Fuzzy job-shop scheduling based on ranking level (/spl lambda/, 1) interval-valued fuzzy numbers. IEEE Transactions on Fuzzy Systems, 10(4), 510-522. doi: https://doi.org/10.1109/TFUZZ.2002.800659
[36] Ludwig, A., Möhring, R. H., & Stork, F. (2001). A computational study on bounding the makespan distribution in stochastic project networks. Annals of Operations Research, 102(1-4), 49-64. doi: https://doi.org/10.1023/A:1010945830113
[37] Niu, Q., Jiao, B., & Gu, X. (2008). Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time. Applied Mathematics and Computation, 205(1), 148-158. doi: https://doi.org/10.1016/j.amc.2008.05.086
[38] Ourari, S., Berrandjia, L., Boulakhras, R., Boukciat, A., & Hentous, H. (2015). Robust approach for centralized job shop scheduling: Sequential flexibility. IFAC-PapersOnLine, 48(3), 1960-1965. doi: https://doi.org/10.1016/j.ifacol.2015.06.375
[39] Palacios, J. J., González-Rodríguez, I., Vela, C. R., & Puente, J. (2014). Robust swarm optimisation for fuzzy open shop scheduling. Natural Computing, 13(2), 145-156. doi: https://doi.org/10.1007/s11047-014-9413-1
[40] Palacios, J. J., González, M. A., Vela, C. R., González-Rodríguez, I., & Puente, J. (2015). Genetic tabu search for the fuzzy flexible job shop problem. Computers & Operations Research, 54, 74-89. doi: https://doi.org/10.1016/j.cor.2014.08.023
[41] Palacios, J. J., Puente, J., Vela, C. R., & González-Rodríguez, I. (2016). Benchmarks for fuzzy job shop problems. Information Sciences, 329, 736-752. doi: https://doi.org/10.1016/j.ins.2015.09.042
[42] Peng, J., & Liu, B. (2004). Parallel machine scheduling models with fuzzy processing times. Information Sciences, 166(1-4), 49-66. doi: https://doi.org/10.1016/j.ins.2003.05.012
[43] Petrovic, S., Fayad, C., Petrovic, D., Burke, E., & Kendall, G. (2008). Fuzzy job shop scheduling with lot-sizing. Annals of Operations Research, 159(1), 275-292. doi: https://doi.org/10.1007/s10479-007-0287-9
[44] Puente Peinador, J., Rodríguez Vela, M. d. C., & González Rodríguez, I. (2010). Fast local search for fuzzy job shop scheduling. Frontiers in Artificial Intelligence and Applications. doi: http://dx.doi.org/10.3233/978-1-60750-606-5-739
[45] Raissi, S., Rooeinfar, R., & Ghezavati, V. R. (2019). Three Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint. Journal of Optimization in Industrial Engineering, 12(2), 131-147.
[46] Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34. doi: http://dx.doi.org/10.5267/j.ijiec.2015.8.004
[47] Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315. doi: https://doi.org/10.1016/j.cad.2010.12.015
[48] Rooeinfar, R., Raissi, S., & Ghezavati, V. (2019). Stochastic flexible flow shop scheduling problem with limited buffers and fixed interval preventive maintenance: a hybrid approach of simulation and metaheuristic algorithms. Simulation, 95(6), 509-528.
[49] Sakawa, M., & Kubota, R. (2000). Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate throughgenetic algorithms. European Journal of Operational Research, 120(2), 393-407. doi: https://doi.org/10.1016/S0377-2217(99)00094-6
[50] Sakawa, M., & Mori, T. (1999). An efficient genetic algorithm for job-shop scheduling problems with fuzzy processing time and fuzzy duedate. Computers & Industrial Engineering, 36(2), 325-341. doi: https://doi.org/10.1016/S0360-8352(99)00135-7
[51] Singh, M. R., & Mahapatra, S. S. (2016). A quantum behaved particle swarm optimization for flexible job shop scheduling. Computers & Industrial Engineering, 93, 36-44. doi: https://doi.org/10.1016/j.cie.2015.12.004
[52] Sowinski, R., & Hapke, M. (2000). Scheduling under fuzziness: Physica-Verlag.
[53] Subramaniam, V., & Raheja, A. S. (2003). mAOR: A heuristic-based reactive repair mechanism for job shop schedules. The International Journal of Advanced Manufacturing Technology, 22(9-10), 669-680. doi: https://doi.org/10.1007/s00170-003-1601-6
[54] Tavakkoli-Moghaddam, R., Safaei, N., & Kah, M. (2008). Accessing feasible space in a generalized job shop scheduling problem with the fuzzy processing times: a fuzzy-neural approach. Journal of the Operational Research Society, 59(4), 431-442. doi: https://doi.org/10.1057/palgrave.jors.2602351
[55] Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Rescheduling manufacturing systems: a framework of strategies, policies, and methods. Journal of Scheduling, 6(1), 39-62. doi: https://doi.org/10.1023/A:1022235519958
[56] Wang, C., Tian, N., Ji, Z., & Wang, Y. (2017). Multi-objective fuzzy flexible job shop scheduling using memetic algorithm. Journal of Statistical Computation and Simulation, 87(14), 2828-2846. doi: https://doi.org/10.1080/00949655.2017.1344846
[57] Wang, K., & Choi, S. (2012). A decomposition-based approach to flexible flow shop scheduling under machine breakdown. International Journal of Production Research, 50(1), 215-234. doi: https://doi.org/10.1080/00207543.2011.571456
[58] Wang, L., Zhou, G., Xu, Y., & Liu, M. (2013). A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem. International Journal of Production Research, 51(12), 3593-3608. doi: https://doi.org/10.1080/00207543.2012.754549
[59] Wang, L., Zhou, G., Xu, Y., Wang, S., & Liu, M. (2012). An effective artificial bee colony algorithm for the flexible job-shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 60(1-4), 303-315. doi: https://doi.org/10.1007/s00170-011-3610-1
[60] Wang, S., Wang, L., Xu, Y., & Liu, M. (2013). An effective estimation of distribution algorithm for the flexible job-shop scheduling problem withfuzzy processing time. International Journal of Production Research, 51(12), 3778-3793. doi: https://doi.org/10.1080/00207543.2013.765077
[61] Wang, X., Gao, L., Zhang, C., & Li, X. (2012). A multi–objective genetic algorithm for fuzzy flexible job–shop scheduling problem. International Journal of Computer Applications in Technology, 45(2-3), 115-125. doi: https://doi.org/10.1504/IJCAT.2012.050700
[62] Wang, X., Li, W., & Zhang, Y. (2013). An improved multi–objective genetic algorithm for fuzzy flexible job–shop scheduling problem. International Journal of Computer Applications in Technology, 47(2-3), 280-288. doi: https://doi.org/10.1504/IJCAT.2013.054360
[63] Xu, Y., Wang, L., Wang, S.-y., & Liu, M. (2015). An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time. Neurocomputing, 148, 260-268. doi: https://doi.org/10.1016/j.neucom.2013.10.042
[64] Yuan, Y., Xu, H., & Yang, J. (2013). A hybrid harmony search algorithm for the flexible job shop scheduling problem. Applied Soft Computing, 13(7),3259-3272. doi: https://doi.org/10.1016/j.asoc.2013.02.013
[65] Zheng, Y. L., & Li, Y. X. (2012). Artificial bee colony algorithm for fuzzy job shop scheduling. International Journal of Computer Applications in Technology, 44(2), 124-129. doi: https://doi.org/10.1504/IJCAT.2012.048682