A new robust counterpart model for uncertain linear programming problems
Subject Areas : Mathematical OptimizationHamid Amiri 1 , Rasoul Shafaei 2
1 - Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran
2 - Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran
Keywords:
Abstract :
[1] Li, Z., Ding, R., & Floudas, C. A. (2011). A comparative theoretical and computational study on robust counterpart optimization: I. Robust linear optimization and robust mixed integer linear optimization. Industrial & Engineering Chemistry Research, 50(18), 10567–10603. https://doi.org/10.1021/ie200150p.
[2] Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton university press. https://doi.org/10.1016/s1474-6670(17)42591-2.
[3] Baringo, A., & Baringo, L. (2016). A stochastic adaptive robust optimization approach for the offering strategy of a virtual power plant. IEEE Transactions on Power Systems, 32(5),3492–3504. https://doi.org/10.1109/TPWRS.2016.2633546.
[4] Taghizadeh, M., Bahramara, S., Adabi, F., & Nojavan, S. (2020). Optimal thermal and electrical operation of the hybrid energy system using interval optimization approach. Applied Thermal Engineering, 169, 114993. https://doi.org/10.1016/j.applthermaleng.2020.114993.
[5] Yu, D., Zhang, T., He, G., Nojavan, S., Jermsittiparsert, K., & Ghadimi, N. (2020). Energy management of wind-PV-storage-grid based large electricity consumer using robust optimization technique. Journal of Energy Storage, 27, 101054. https://doi.org/10.1016/j.est.2019.101054.
[6] Cao, Y., Huang, L., Li, Y., Jermsittiparsert, K., Ahmadi-Nezamabad, H., & Nojavan, S. (2020). Optimal scheduling of electric vehicles aggregator under market price uncertainty using robust optimization technique. International Journal of Electrical Power and Energy Systems, 117, 105628. https://doi.org/10.1016/j.ijepes.2019.105628.
[7] Luo, Y., Wang, Z., Zhu, J., Lu, T., Xiao, G., Chu, F., & Wang, R. (2022). Multi-objective robust optimization of a solar power tower plant under uncertainty. Energy, 238, 121716. https://doi.org/10.1016/j.energy.2021.121716.
[8] Yu, D., Wu, J., Wang, W., & Gu, B. (2022). Optimal performance of hybrid energy system in the presence of electrical and heat storage systems under uncertainties using stochastic p-robust optimization technique. Sustainable Cities and Society, 83, 103935. https://doi.org/10.1016/j.scs.2022.103935.
[9] Parvar, S. S., & Nazaripouya, H. (2022). Optimal Operation of Battery Energy Storage Under Uncertainty Using Data-Driven Distributionally Robust Optimization. Electric Power Systems Research, 211, 108180. https://doi.org/10.1016/j.epsr.2022.108180.
[10] Righetto, G. M., Morabito, R., & Alem, D. (2016). A robust optimization approach for cash flow management in stationery companies. Computers & Industrial Engineering, 99, 137–152. https://doi.org/10.1016/j.cie.2016.07.010.
[11] Ashrafi, H., & Thiele, A. C. (2021). A study of robust portfolio optimization with European options using polyhedral uncertainty sets. Operations Research Perspectives, 8, 100178. https://doi.org/10.1016/j.orp.2021.100178.
[12] Aalaei, A., & Davoudpour, H. (2017). A robust optimization model for cellular manufacturing system into supply chain management. International Journal of Production Economics, 183, 667–679. https://doi.org/10.1016/j.ijpe.2016.01.014.
[13] Bairamzadeh, S., Saidi-Mehrabad, M., & Pishvaee, M. S. (2018). Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach. Renewable Energy, 116, 500–517. https://doi.org/10.1016/j.renene.2017.09.020.
[14] Thevenin, S., Ben-Ammar, O., & Brahimi, N. (2022). Robust optimization approaches for purchase planning with supplier selection under lead time uncertainty. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2022.03.029.
[15] Krishnan, R., Arshinder, K., & Agarwal, R. (2022). Robust optimization of sustainable food supply chain network considering food waste valorization and supply uncertainty. Computers & Industrial Engineering, 171, 108499.
[16] Chen, L., Gendreau, M., Hà, M. H., & Langevin, A. (2016). A robust optimization approach for the road network daily maintenance routing problem with uncertain service time. Transportation Research Part E: Logistics and Transportation Review, 85, 40–51. https://doi.org/10.1016/j.tre.2015.11.006.
[17] Ziaei, Z., & Jabbarzadeh, A. (2021). A multi-objective robust optimization approach for green location-routing planning of multi-modal transportation systems under uncertainty. Journal of Cleaner Production, 291, 125293. https://doi.org/10.1016/j.jclepro.2020.125293.
[18] Banerjee, O., El Ghaoui, L., & d’Aspremont, A. (2008). Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. The Journal of Machine Learning Research, 9, 485–516. https://doi.org/10.1145/1390681.1390696.
[19] Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM (JACM), 58(3), 1–37. https://doi.org/10.1145/1970392.1970395.
[20] Xu, H., Caramanis, C., & Mannor, S. (2010). Robust regression and lasso. IEEE Transactions on Information Theory, 56(7), 3561–3574. https://doi.org/10.1109/TIT.2010.2048503.
[21] Xu, H., Caramanis, C., & Mannor, S. (2009). Robustness and Regularization of Support Vector Machines. Journal of Machine Learning Research, 10(7).
[22] Wang, C., Peng, X., Shang, C., Fan, C., Zhao, L., & Zhong, W. (2021). A deep learning-based robust optimization approach for refinery planning under uncertainty. Computers and Chemical Engineering, 155, 107495. https://doi.org/10.1016/j.compchemeng.2021.107495.
[23] Singh, S., & Biswal, M. P. (2021). A robust optimization model under uncertain environment: An application in production planning. Computers and Industrial Engineering, 155, 107169. https://doi.org/10.1016/j.cie.2021.107169.
[24] Zhang, L., Yuan, Z., & Chen, B. (2022). Adjustable Robust Optimization for the Multi-period Planning Operations of an Integrated RefineryPetrochemical Site under Uncertainty. Computers and Chemical Engineering, 160, 107703. https://doi.org/10.1016/j.compchemeng.2022.107703
[25] Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21(5), 1154–1157. https://doi.org/10.1287/opre.21.5.1154.
[26] El Ghaoui, L., & Lebret, H. (1997). Robust solutions to least-squares problems with uncertain data. SIAM Journal on Matrix Analysis and Applications, 18(4), 1035–1064. https://doi.org/10.1137/S0895479896298130.
[27] El Ghaoui, L., Oustry, F., & Lebret, H. (1998). Robust solutions to uncertain semidefinite programs. SIAM Journal on Optimization, 9(1), 33–52. https://doi.org/10.1137/S1052623496305717.
[28] Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769–805. https://doi.org/10.1287/moor.23.4.769.
[29] Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1), 1–13. https://doi.org/10.1016/S0167-6377(99)00016-4.
[30] Ben-Tal, A., & Nemirovski, A. (2000). Robust solutions of linear programming problems contaminated with uncertain data. Mathematical Programming, 88(3), 411–424. https://doi.org/10.1007/PL00011380.
[31] Bertsimas, D., & Sim, M. (2003). Robust discrete optimization and network flows. Mathematical Programming, 98(1), 49–71. https://doi.org/10.1007/s10107-003-0396-4.
[32] Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53. https://doi.org/10.1287/opre.1030.0065.
[33] Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations Research, 43(2), 264–281. https://doi.org/10.1287/opre.43.2.264.
[34] Pachamanova, D. A. (2002). A robust optimization approach to finance. Massachusetts Institute of Technology.
[35] Jalilvand-Nejad, A., Shafaei, R., & Shahriari, H. (2016). Robust optimization under correlated polyhedral uncertainty set. Computers & Industrial Engineering, 92, 82–94. https://doi.org/10.1016/j.cie.2015.12.006.
[36] Daneshvari, H., & Shafaei, R. (2021). A new correlated polyhedral uncertainty set for robust optimization. Computers & Industrial Engineering, 157, 107346. https://doi.org/10.1016/j.cie.2021.107346