Designing a model of product arrangement and multi-warehouse location-routing problem
Subject Areas : Layout Planningsaeed sadeghi 1 , mohammad fallah 2 , esmaeil najafi 3
1 - Department of Industrial Engineering, Islamic Azad University, Central Tehran Branch
2 - Department of Industrial Engineering, Islamic Azad University, Central Tehran Branch
3 - Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Keywords:
Abstract :
[1] Ahkamiraad, A., & Wang, Y. (2018). Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery, and time windows. Computers & Industrial Engineering, 119, 76-84.
[2] Avella, P., Boccia, M., & Sforza, A. (2004). Solving a fuel delivery problem by heuristic and exact approaches. European Journal of Operational Research, 152(1), 170-179.
[3] Bathaee, M., Nozari, H., & Szmelter-Jarosz, A. (2023). Designing a New Location-Allocation and Routing Model with Simultaneous Pick-Up and Delivery in a Closed-Loop Supply Chain Network under Uncertainty. Logistics, 7(1), 3.
[4] Bouanane, K., Amrani, M. E., & Benadada, Y. (2022). The vehicle routing problem with simultaneous delivery and pickup: a taxonomic survey. International Journal of Logistics Systems and Management, 41(1-2), 77-119.
[5] Casazza, M., Ceselli, A., & Calvo, R. W. (2021). A route decomposition approach for the single commodity split pickup and split delivery vehicle routing problem. European Journal of Operational Research, 289(3), 897-911.
[6] Derigs, U., Gottlieb, J., Kalkoff, J., Piesche, M., Rothlauf, F., & Vogel, U. (2011). Vehicle routing with compartments: applications, modelling and heuristics. OR spectrum, 33(4), 885-914.
[7] Du, J., Li, X., Yu, L., Dan, R., & Zhou, J. (2017). Multi-depot vehicle routing problem for hazardous materials transportation: a fuzzy bilevel programming. Information Sciences, 399, 201-218.
[8 ] Farahani, A., Tohidi, H., Shoja, A. (2020). Optimization of Overall Equipment Effectiveness with Integrated Modeling of Maintenance and Quality. Engineering Letters, 28(2).
[9] Ghahremani-Nahr, J., Ghaderi, A., & Kian, R. (2023). A food bank network design examining food nutritional value and freshness: A multi objective robust fuzzy model. Expert Systems with Applications, 215, 119272.
[10] Ghahremani-Nahr, J., Kian, R., & Sabet, E. (2019). A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm. Expert Systems with Applications, 116, 454-471.
[11] Ghobadi, A., Tavakkoli-Moghaddam, R., Fallah, M., & Kazemipoor, H. (2021). Multi-depot electric vehicle routing problem with fuzzy time windows and pickup/delivery constraints. Journal of Applied Research on Industrial Engineering, 8(1), 1-18.
[12] Golsefidi, A. H., & Jokar, M. R. A. (2020). A robust optimization approach for the production-inventory-routing problem with simultaneous pickup and delivery. Computers & Industrial Engineering, 143, 106388.
[13] Hu, C., Lu, J., Liu, X., & Zhang, G. (2018). Robust vehicle routing problem with hard time windows under demand and travel time uncertainty. Computers & Operations Research, 94, 139-153.
[14] Jin, T., Guo, S., Wang, F., & Lim, A. (2004). One-stage search for multi-depot vehicle routing problem. In Proceedings of the Conference on Intelligent Systems and Control (pp. 446-129).
[15] Lahyani, R., Coelho, L. C., Khemakhem, M., Laporte, G., & Semet, F. (2015). A multi-compartment vehicle routing problem arising in the collection of olive oil in Tunisia. Omega, 51, 1-10.
[16] Lalla-Ruiz, E., Expósito-Izquierdo, C., Taheripour, S., & Voß, S. (2016). An improved formulation for the multi-depot open vehicle routing problem. OR spectrum, 38(1), 175-187.
[17] Li, J., Li, T., Yu, Y., Zhang, Z., Pardalos, P. M., Zhang, Y., & Ma, Y. (2019). Discrete firefly algorithm with compound neighborhoods for asymmetric multi-depot vehicle routing problem in the maintenance of farm machinery. Applied Soft Computing, 81, 105460.
[18] Liu, R., Jiang, Z., Fung, R. Y., Chen, F., & Liu, X. (2010). Two-phase heuristic algorithms for full truckloads multi-depot capacitated vehicle routing problem in carrier collaboration. Computers & Operations Research, 37(5), 950-959.
[19] Majidi, S., Hosseini-Motlagh, S. M., Yaghoubi, S., & Jokar, A. (2017). Fuzzy green vehicle routing problem with simultaneous pickup– delivery and time windows. RAIRO-operations research, 51(4), 1151-1176.
[20] Mohammadi, H., Ghazanfari, M., Nozari, H., & Shafiezad, O. (2015). Combining the theory of constraints with system dynamics: A general model (case study of the subsidized milk industry). International Journal of Management Science and Engineering Management, 10(2), 102-108.
[21 ] Namdari, A., Drzymalski, J., Tohidi, H. (2017). Labor Productivity and Optimal Team Size in an Inspection Process. IIE Annual Conference. Proceedings, 854-859
[20] Nozari, H., Aliahmadi, A., Jafari-eskandari, M., & Khaleghi, G. (2015). An Extended Compact Genetic Algorithm for Milk Run Problem with Time Windows and Inventory Uncertainty. International Journal of Applied, 5(2), 35-48.
[22] Öztaş, T., & Tuş, A. (2022). A hybrid metaheuristic algorithm based on iterated local search for vehicle routing problem with simultaneous pickup and delivery. Expert Systems with Applications, 202, 117401
[23] Qin, G., Tao, F., Li, L., & Chen, Z. (2019). Optimization of the simultaneous pickup and delivery vehicle routing problem based on carbon tax. Industrial Management & Data Systems.
[24] Shi, Y., Zhou, Y., Boudouh, T., & Grunder, O. (2020). A lexicographic-based two-stage algorithm for vehicle routing problem with simultaneous pickup–delivery and time window. Engineering Applications of Artificial Intelligence, 95, 103901.
[25]Tohidi, H., Jabbari, M.M., (2012). “Decision role in management to increase effectiveness of an organization”. Procedia-social and behavioral sciences, 32: 825-828.
[26] Wang, C., Mu, D., Zhao, F., & Sutherland, J. W. (2015). A parallel simulated annealing method for the vehicle routing problem with simultaneous pickup–delivery and time windows. Computers & Industrial Engineering, 83, 111-122.
[27] Xiao, Y., Zhao, Q., Kaku, I., Xu, Y. (2012). "Development of a fuel consumption optimization model for the capacitated vehicle routing problem", Computers & Operations Research, 39(7): 1419–1431.
[28] YYousefi, k. M., Didaver, f., Rahmati, f., & Sedighpour, m. (2012). An effective imperialist competitive algorithm for solving the open vehicle routing problem.
[29] Yousefikhoshbakht, M., & Khorram, E. (2012). Solving the vehicle routing problem by a hybrid meta-heuristic algorithm. Journal of Industrial Engineering International, 8(1), 11.
[30] Yousefikhoshbakht, M., & Sedighpour, M. (2012). A combination of sweep algorithm and elite ant colony optimization for solving the multiple traveling salesman problem. Proceedings of the Romanian academy a, 13(4), 295-302.
[31] Yu, V. F., Susanto, H., Yeh, Y. H., Lin, S. W., & Huang, Y. T. (2022). The vehicle routing problem with simultaneous pickup and delivery and parcel lockers. Mathematics, 10(6), 920.
[32] Zhou, Y., & Lee, G. M. (2017). A Lagrangian relaxation-based solution method for a green vehicle routing problem to minimize greenhouse gas emissions. Sustainability, 9(5), 776.