A new control chart based on discriminant analysis for simple linear profiles monitoring
Subject Areas : Mathematical OptimizationMona Ayoubi 1 , Negin Khaksari 2
1 - Industrial Engineering Department, West Tehran Branch- Islamic Azad University-shahid Azari Street- Ashrafi Esfahani Highway -Tehran-Iran
2 - Industrial Engineering Department, West Tehran Branch- Islamic Azad University-shahid Azari Street- Ashrafi Esfahani Highway -Tehran-Iran
Keywords:
Abstract :
[2] Amiri, A., Zand, A., & Soudbakhsh, D. (2011, January). Monitoring simple linear profiles in the leather industry (a case study). In Proceedings of the 2nd International Conference on Industrial Engineering and Operations Management, Kuala Lumpur, Malaysia (pp. 22-24).
[3] Deng, X., Tian, X., Chen, S., & Harris, C. J. (2017). Fault discriminant enhanced kernel principal component analysis incorporating prior fault information for monitoring nonlinear processes. Chemometrics and Intelligent Laboratory Systems, 162, 21-34.
[4] Galiaskarov, M. R., Kurkina, V. V., & Rusinov, L. A. (2017). Online diagnostics of timevarying nonlinear chemical processes using moving window kernel principal component analysis and Fisher discriminant analysis. Journal of Chemometrics, 31(8), e2866.
[5] Gupta, S., Montgomery, D. C., & Woodall, W. H. (2006). Performance evaluation of two methods for online monitoring of linear calibration profiles. International Journal of Production Research, 44(10), 1927-1942.
[6] Haq, A., Bibi, M., & Shah, B. A. (2020). A novel approach to monitor simple linear profiles using individual observations. Communications in Statistics-Simulation and Computation, DOI:
10.1080/03610918.2020.1799229.
[7] Hosseinifard, S. Z., Abdollahian, M., & Zeephongsekul, P. (2011). Application of artificial neural networks in linear profile monitoring. Expert Systems with Applications, 38(5), 4920-4928.
[8] HU, Y. X., & LI, X. B. (2012). Bayes discriminant analysis method to identify risky of complicated goaf in mines and its application. Transactions of Nonferrous Metals Society of China, 22(2), 425-431.
[10] Kalaei, M., Soleimani, P., Niaki, S. T. A., & Atashgar, K. (2018). Phase-I monitoring of standard deviations in multistage linear profiles. Journal of Industrial Engineering International, 14(1), 133-142.
[11] Kang, L., & Albin, S. L. (2000). On-line monitoring when the process yields a linear profile. Journal of quality Technology, 32(4), 418-426.
[12] Kim, K., Mahmoud, M. A., & Woodall, W. H. (2003). On the monitoring of linear profiles. Journal of Quality Technology, 35(3), 317-328.
[13] Li, Z., & Wang, Z. (2010). An exponentially weighted moving average scheme with variable sampling intervals for monitoring linear profiles. Computers & Industrial Engineering, 59(4), 630-637.
[14] Lim, Y. F., Yahaya, S. S. S., & Ali, H. (2018). Robust Linear Discriminant Analysis with Highest Breakdown Point Estimator. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1-11), 7-12.
[15] Mahmoud, M. A., Morgan, J. P., & Woodall, W. H. (2010). The monitoring of simple linear regression profiles with two observations persample. Journal of Applied Statistics, 37(8), 1249-1263.
[16] Maleki, M. R. (2015). Online monitoring and fault diagnosis of multivariate-attribute process mean using neural networks and discriminant analysis technique. International Journal of Engineering, 28(11), 1634-1643.
[18] Máquina, A. D. V., Souza, L. M. D., Gontijo, L. C., Santos, D. Q., & Borges Neto, W. (2017). Characterization of Biodiesel by Infrared Spectroscopy with Partial Least Square Discriminant Analysis. Analytical Letters, 50(13), 2117-2128.
[19] Moheghi, H. R., Noorossana, R., & Ahmadi, O. (2020). GLM profile monitoring using robust estimators. Quality and Reliability Engineering International. DOI: 10.1002/qre.2755.
[20] Narvand, A., Soleimani, P., & Raissi, S. (2013). Phase II monitoring of auto-correlated linear profiles using linear mixed model. Journal of Industrial Engineering International, 9(1), 12.
[22] Noorossana, R., & Ayoubi, M. (2012). Profile monitoring using nonparametric bootstrap T 2 control chart. Communications in Statistics- Simulation and Computation, 41(3), 302-315.
[23] Noorossana, R., Eyvazian, M., & Vaghefi, A. (2010). Phase II monitoring of multivariate simple linear profiles. Computers & Industrial Engineering, 58(4), 563-570.
[24] Nor, N. M., Hussain, M. A., & Hassan, C. R. C. (2015). Process monitoring and fault detection in non-linear chemical process based on multi-scale kernel Fisher discriminant analysis. In Computer Aided Chemical Engineering (Vol. 37, pp. 1823-1828). Elsevier.
[25] Nor, N. M., Hussain, M. A., & Hassan, C. R. C. (2017). Fault diagnosis and classification framework using multi-scale classification based on kernel Fisher discriminant analysis for chemical process system. Applied Soft Computing, 61, 959-972.
[26] Pei, X., Yamashita, Y., Yoshida, M., & Matsumoto, S. (2006). Discriminant analysis and control chart for the fault detection and identification. In Computer Aided Chemical Engineering (Vol. 21, pp.1281-1286). Elsevier.
[27] Rahimi, S. B., Amiri, A., & Ghashghaei, R. (2019). Simultaneous monitoring of mean vector and covariance matrix of multivariate simple linear profiles in the presence of within profile autocorrelation. Communications in Statistics-Simulation and Computation, DOI: 10.1080/03610918.2019.1588314.
[28] Ren, R., Han, K., Zhao, P., Shi, J., Zhao, L., Gao, D., ... & Yang, Z. (2019). Identification of asphalt fingerprints based on ATR-FTIR spectroscopy and principal component-linear discriminant
analysis. Construction and Building Materials, 198, 662-668.
[29] Theophilou, G., Lima, K. M., Martin-Hirsch, P. L., Stringfellow, H. F., & Martin, F. L. (2016). ATR-FTIR spectroscopy coupled with chemometric analysis discriminates normal, borderline and malignant ovarian tissue: classifying subtypes of human cancer. Analyst, 141(2), 585-594.
[30] Wang, Y., Zhou, J., Wei, G., Dong, Z., & Chen, H. (2016). Stator winding single-phase grounding faults protective scheme based on discriminant analysis for Powerformers with selectivity. International Journal of Electrical Power & Energy Systems, 77, 145-150.
[31] Yan, B., Fang, Z., Shen, L., & Qu, H. (2015). Root Cause Analysis of Quality Defects Using HPLC–MS Fingerprint Knowledgebase for Batch tobatch Quality Control of Herbal Drugs. Phytochemical analysis, 26(4), 261-268.
[32] Yazdi, A. A., Hamadani, A. Z., & Amiri, A. (2019). Phase II monitoring of multivariate simple linear profiles with estimated parameters. Journal of Industrial Engineering International, 15(4), 557-570.
[33] Zhang, J., Li, Z., & Wang, Z. (2009). Control chart based on likelihood ratio for monitoring linear profiles. Computational statistics & data analysis, 53(4), 1440-1448.
[34] Zhang, G., Sun, H., Ji, Z., Xia, G., Feng, L., & Sun, Q. (2016). Kernel dictionary learning based discriminant analysis. Journal of Visual Communication and Image Representation, 40, 470-484.
[35] Zhao, C., & Gao, F. (2015). A nested-loop Fisher discriminant analysis algorithm. Chemometrics and Intelligent Laboratory Systems, 146,396-406.
[36] Zhao, C., Wang, W., & Gao, F. (2016). Probabilistic fault diagnosis based on Monte Carlo and nested-loop fisher discriminant analysis for industrial processes. Industrial & Engineering Chemistry Research, 55(50), 12896-12908.
[37] Zheng, J., Wang, H., Song, Z., & Ge, Z. (2019). Ensemble semi- supervised Fisher discriminant analysis model for fault classification in industrial processes. ISA transactions, 92, 109-117.
[38] Zhu, J., & Lin, D. K. (2009). Monitoring the slopes of linear profiles. Quality Engineering, 22(1), 1-12.
[41] Zou, C., Zhou, C., Wang, Z., & Tsung, F. (2007). A self-starting control chart for linear profiles. Journal of Quality Technology, 39(4), 364-375.