مدلسازی اثر تغییر اقلیم بر تولید بادام زمینی بر مبنای افزایش دو درجه دما در شرایط محیطی آینده در استان گیلان، ایران
Subject Areas : Environmental policy and managementSeyyed Ali Noorhosseini 1 , Afshin Soltani 2 , Hossein Ajamnoroozi 3
1 - Department of Agronomy, Gorgan Branch, Islamic Azad University, Gorgan, Iran
2 - Agronomy Group, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 - Department of Agronomy, Gorgan Branch, Islamic Azad University, Gorgan, Iran
Keywords: افزایش دما, پهنه بندی با ArcGIS تغییر اقلیم, تولید بادام زمینی,
Abstract :
به منظور ارزیابی اثر تغییر اقلیم بر رشد و عملکرد بادامزمینی بر مبنای دو درجه افزایش دما، تحقیقی با استفاده از مدل SSM-Peanut انجام شد. شبیهسازی براساس اطلاعات بلندمدت ایستگاههای هواشناسی استان گیلان (شامل انزلی، فرودگاه رشت، جهاد کشاورزی رشت، لاهیجان، آستارا، کیاشهر، تالش و رودسر) صورت گرفت. در انتها با اجرای مدل برای هر سال و تحت هر سناریو، روز تا گلدهی، روز تا شروع تشکیل غلاف، روز تا شروع تشکیل دانه، روز تا رسیدگی برداشت، شاخص سطح برگ، تجمع ماده خشک، عملکرد دانه و غلاف از خروجی مدل ثبت شد. تجزیه و تحلیل دادهها با استفاده از نرمافزار SPSS انجام شد. علاوه برآن پهنهبندی استان گیلان از لحاظ تولید بادامزمینی درشرایط فعلی و پس از تغییر اقلیم با استفاده از نرمافزار ArcGIS صورت گرفت. برای مقایسه تفاوت بین رشد و عملکرد بادامزمینی در شرایط فعلی با وقوع تغییرات اقلیمی از t-test و آنالیز تشخیصی استفاده شد. نتایج نشان داد که تفاوت آماری معنیداری از لحاظ تمامی صفات مورد بررسی درشرایط فعلی و پس از تغییر اقلیم (بر مبنای افزایش دما) در استان گیلان وجود داشت. با افزایش درجه حرارت میانگین طول دوره رشد بادامزمینی در استان گیلان از 142 روز به 123 روز کاهش پیدا کرد. در عین حال عملکرد بادامزمینی در شرایط تغییر اقلیم برمبنای افزایش دو درجه سانتیگراد دما برابر با 73/8 درصد بیشتر از شرایط کنونی بدست آمد.
Ababaei B., Sohrabi, T., Mirzaei, F., Rezaverdinejad,V., & Karimi, B. (2010). Climate change impact on wheat yield and analysis of the related risks: (Case study: Esfahan Ruddasht Region). Water and Soil Science (Agricultural Science), 20(3), 135-148.
Bannayan, M. (2009). Crop models efficiency and performance under elevated atmospheric CO2. Journal Water and Soil, 23(4), 115-126 (In Persian).
Barzegar, A.B., & Soltani, A. (2007). The effects of future climate change on chickpea yeild in Northwest Rainfed Conditions. Paper presented at the second ecological conference of Iran in 18 October. Gorgan University of Agricultural Sciences and Natural Resources Gorgan, Iran.
FAO (2010). Production statistics of crops. Food and Agriculture Organization. Retrieved from (http://faostat.fao.org).
Fengmei, Y., Yinglong, X., Erda, L., Masayuki, Y., & Jiahua, Z. (2007). Assessing the impacts of climate change on rice yields in the main rice areas of China. Climatic Change, 80, 395-409.
Gholipoor, M., & Soltani, A. (2009). Future climate impacts on chickpea in Iran and ICARDA. Research Journal of Environmental Sciences, 3(1), 16-28.
Goudriann, J. (1995). Global carbon cycle and carbon sequestration. In Beran, M, A. (ed). Paper presented at Carbon Sequestration in the Biosphere (Processes and Prospects). Springer, p. 3-18.
Gregory, P.J., Ingram, J.S.I., & Brklacich, M. (2005). Climate change and food security. Philosophical Transactions of the Royal Society, 360, 2139-2148.
Hajarpoor, A., Soltani, A., Zeinali, E., & Sayyedi, F. (2014). Simulating climate change impacts on production of chickpea under water-limited conditions. Agriculture Science Developments, 3(6), 209-217.
Hajarpour, A., Soltani, A., Zeinali, E., & Sayyedi, F. (2013). Simulating the impact of climate change on production of Chickpea in rainfed and irrigated condition of Kermanshah. Journal of Plant production research, 20(2), 235-252.
IPCC (2007). Summary for Policy Makers. Climate Change 2007: The Physical Science Basis. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York.
IPCC (2013). Summary for policymakers. In: Climate Change 2013. Fifth assessment report of the Intergovernmental Panel on Climate Change. Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York.
Ittersum, M.k., Howden, S.M., & Asseng, S. (2003). Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agriculture Ecosystems & Environment, 97, 255-73.
Koocheki, A., & Nassiri, M. (2008). Impacts of climate change and CO2 concentration on wheat yield in Iran and adaptation strategies. Iranian Journal of Field Crops Research, 6(1), 139-153
Lashkari, A., Alizadeh, A., & Bannayan, M. 2011. Investigation of Mitigation of Climate Change Impacts on Maize Production in Northeast of Iran. Journal of Water and Soil, 25(4), 926-939.
Leport, L., Turner, N.C., Davies S.L., & Siddique, K.H.M. (2006). Variation in pod production and abortion among chickpea cultivars under terminal drought. European Journal of Agronomy, 24(3), 236-246.
Maiti, R., & Ebeling, P.W. (2002). The Peanut (Arachis hypogaea) Crop. Science Publishers, Inc., 376p.
Mattews, R.B., Kropff, M.J., & Bachelet, D. (1994). General introduction. In: Matthews, R.B., Kropff, M.J., Bachelet, and Vanlaar, H.H. (ed.) Modeling the impact of change on rice production in Asia. CAB International, pp, 3-7.
Meghdadi, N., Soltani, A., Kamkar, B., & Hajarpoor, A. (2015). Simulating climate change impacts on production of chickpea in Zanjan province. Journal of Crop Production, 7(1), 1-22.
Mirsaneh, M.S., Mesah-Bavani, A.R., Bolook-Azari, S., & Sohrabi-Molayousef, S. (2010). Assessment of the effect of climate change on the irrigation need for sugar beet and its growth period. Paper presented at the Second National Conference on Integrated Water Resources Management.
Noorhosseini, S.A., Safarzadeh, M.N., & Sadeghi, S.M. (2016). Effect of production region and seed weight on some characteristics related with germinability and seedling vigour of peanut (Arachis hypogaea L.). Iranian Journal of Seed Science and Technology, 5(1), 75-91. (In Persian)
Noorhosseini, S.A., Soltani, A., & Ajamnoroozi, H. (2018). Simulating peanut (Arachis hypogaea L.) growth and yield with the use of the Simple Simulation Model (SSM). Computers and Electronics in Agriculture, 145, 63-75.
Nord, E.A., & Lynch, J.P. (2009). Plant phenology: a critical controller of soil resource acquisition. Journal of Experimental Botany, 60(7), 1927-1937.
Rawlins. S.L. (1991). Global environmental change and agriculture. Journal of production Agriculture, 4, 291-293.
Roy, K., Masudur, R., & Uthpal, K. (2009). Future Climate Change and Moisture Stress: Impact on Crop Agriculture in South-Western Bangladesh. Climate Change and Development, 1(1), 1-8.
Sabaghpour, S.H., Mahmodi, A.A., Saeed, A., Kamel, M., & Malhotra, R. (2006). Study on chickpea drought tolerance lines under dryland condition of Iran. Indian Journal of Crop Science, 1, 70-73.
Safarzadeh, M.N. (2008). Peanut (Arachis hypogaea L.). Rasht: Islamic Azad University Publications, Rasht Branch, Iran.
Saunders, M.A. (1999). Earth’s future climate. Philosophical Transactions of the Royal Society, 357, 3459- 3480.
Soltani, A., & Sinclair, T.R., (2012). Optimizing chickpea phenology to available water under current and future climates. European Journal of Agronomy, 38(0), 22-31.