مقایسه توان گیاه پالایی دو گیاه زینتی پوتوس و سانسوریا به هنگام مواجه با آلودگی های فضای بسته
Subject Areas : Journal of Ornamental Plantsویدا اخوان مرکزی 1 , روح انگیز نادری 2 , الهام دانایی 3 , سپیده کلاته جاری 4 , فرشته نعمت اللهی 5
1 - گروه علوم باغبانی و زراعت، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه باغبانی، دانشکده کشاورزی و منابع طبیعی تهران، ایران
3 - گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد گرمسار، گرمسار، ایران
4 - گروه علوم باغبانی و زراعت، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
5 - گروه شیمی، واحد تهران شرق، دانشگاه آزاد اسلامی، ایران
Keywords: آلایندههای محیط های بسته, پوتوس, ترکیبات آلی فرار, سانسوریا, گیاهان آپارتمانی,
Abstract :
آلودگی هوای داخل خانه یکی از مهمترین موضوعات زیست محیطی در جهان است. ترکیبات آلی فرار که از جمله آلاینده های محیط های بسته می باشند، می تواند سلامت انسان را به خطر بیاندازد. در این راستا و به منظور بررسی توان گیاه پالایی دو گیاه سانسوریا و پوتوس در حذف چهار آلاینده بنزن، استون، اتانول و متانول از محیطهای بسته هدف، آزمایشی طراحی و اجرا گردید. ابتدا دو گونه گیاهی بطور جداگانه در گلدانهای مختلف کشت شدند، سپس درون محفظه های شیشهای دربسته به حجم 125 لیتر قرار گرفتند. هر گیاه به مدت 24 ساعت در معرض غلظتهای مختلف آلایندهها قرارگرفت. نتایج بررسیهای بیوشیمیایی نشان داد، درصد نشت یونی گیاهان پوتوس تیمار شده در مقایسه با شاهد کاهش یافته است اما در گیاه سانسوریا در اکثریت تیمارها افزایش یافت. در مقابل، محتوی کلروفیل کل برگ سانسوریا در تمام تیمارها افزایش داشت اما در پوتوس به جزء تیمار بنزن 50 میکرولیتر/لیتر تفاوت چشمگیری با شاهد دیده نشد. میزان فعالیت آنزیم کاتالاز در هر دو گیاه کاهش چشمگیری داشت خصوصا تیمار استن 50 میکرولیتر/لیتر در گیاه سانسوریا. میزان فعالیت آنزیم سوپراکسید دیسموتاز در دو گیاه و تمام تیمارها نسبت به شاهد افزایش داشت و بیشترین آن در تیمار بنزن50 میکرولیتر/لیتر در گیاه سانسوریا بود. همچنین میزان محتوای پرولین گیاهان پوتوس تفاوتی نسبت به شاهد نداشت اما در سانسوریا کلیه تیمارها خصوصا دو تیمار استن 50 میکرولیتر/لیتر و اتانول 50 میکرولیتر/لیتر افزایش یافتند. با توجه به نتایج هر دو گونه استفاده شده در این تحقیق قادر به گیاه پالایی محیط های بسته می باشند و این توانایی در پوتوس به دلیل سازگاری بالاتر با شرایط، بیش از سانسوریا مشاهده شد. همچنین هنگام قرار گرفتن در معرض بنزن بیشترین و به هنگام تیمار با استون کمترین تنش و آسیب بافتی به گیاهان وارد شد.
Abdossi, V. and Danaee, E. 2019. Effects of some amino acids and organic acids on enzymatic activity and longevity of Dianthus caryophyllus cv. Tessino at pre-harvest stage. Journal of Ornamental Plants, 9 (2): 93-104.
Abi, H. 1984. Catalase in vitro. Method of Enzymology, 105: 121-126.
Achille, K.N., Maxime, A.D., Sabas, B.Y.S. and Kouamé, D.B. 2015. Detoxifying hydrogen peroxide enzymes activity in two plant species exposed to air pollution in Abidjan city (Côte d'Ivoire). International Journal of Plant, Animal and Environmental Sciences, 5 (1): 140-145.
Agbaire, O.P. 2016. Impact of air pollution on proline and soluble sugar content of selected plant species. Chemistry and Material Research, 8 (5): 72-76.
Akbari, A. 2015. The effect of air pollution on physiological characteristics of elm, maple and sycamore plants in Shiraz. M.Sc. Thesis in Biology. Shiraz University. 101 p.
Ali, A. A. and El-Yemeni, M.N. 2010. Atmospheric air pollution effects on some exhibited plants at Aljubail Industrial City, KSA. I-physiological characteristics and antioxidant enzymes. Australian Journal of Basic and Applied Sciences, 4 (6): 1251-1263.
Areington, C.A., Varghese, B. and Ramdhani, S. 2015. An assessment of morphological, physiological and biochemical biomarkers of industrial air pollution in the leaves of Brachylaena discolor. Water, Air, & Soil Pollution, 226 (9): 291.
Bates, L.S., Waldren, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207.
Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276-287.
Brilli, F., Fares, S., Ghirardo, A., de Visser, P., Calatayud, V., Muñoz, A. and Menghini, F. 2018. Plants for sustainable improvement of indoor air quality. Trends in Plant Science, 23 (6): 507-512.
Danaee, E. and Abdossi, V. 2018. Effect of different concentrations and application methods of polyamines (putrescine, spermine, spermidine) on some morphological, physiological and enzymatic characteristics and vase life of Rosa hybrida cv. ‘Dolce Vita’ cut flower. Journal of Ornamental Plants, 8 (3): 171-182.
Davamani, V., Deepasri, M., Parameswari, E., Arulmani, S., Sebastian, S.P. and Ilakia, T. 2020. Chemistry of indoor pollutants and their impacts on human health. International Research Journal of Pure and Applied Chemistry, 21 (9): 40-61.
Gawronska, H. and Bakera, B. 2015. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Quality, Atmosphere, and Health, 8: 265-272.
Garg, N. and Manchanda, G. 2009. ROS generation in plants: Boon or bane. Plant Biosystems, 143 (1): 81-96.
Gill, S.S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48 (12): 909-930.
Gong, Y., Zhou, T., Wang, P., Lin, Y., Zheng, R., Zhao, Y. and Xu, B. 2019. Fundamentals of ornamental plants in removing benzene in indoor air. Atmosphere, 10 (4): 221.
Liu, Y., Ding, H., Ge, H., Wang, H. and Yang, H. 2014. Tolerance of Cymbidium Golden Elf and Crassula portulacea to different concentrations of benzene fumigation. Chinese Science Bulletin, 58 (S1): 210-215.
Lu, M., Lu, J.H., Li, D.H., Zhang, L.F. and Zhao, X.M. 2018. Study on changes of chlorophyll content in plant under indoor benzene stress. In: IOP Conference Series: Earth and Environmental Science, 186 (3): 012015.
Molaahmad Nalousi, A., Azadi, P. and Hedayat, B. 2016. Reduction of air pollution in homes and workplaces using ornamental plants. Flower and Ornamental Plants, 1 (1): 45-59.
Muhammad, J., Ijaz, M., Salma, P., Tayybah, N., Arshad, A., Sami, U.J. and Shafiq, U.R. 2013. Smoke priming, a potent protective agent against salinity: Effect on proline accumulation, elemental uptake, pigmental attributes and protein banding patterns of rice (Oryza Sativa). Journal of Stress Physiology and Biochemistry, 9 (1): 169-183.
Parseh, I., Teiri, H., Hajizadeh, Y. and Ebrahimpour, K. 2018. Phytoremediation of benzene vapors from indoor air by Schefflera arboricola and Spathiphyllum wallisii plants. Atmospheric Pollution Research, 9 (6): 1083-1087.
Seyyedinejad, S.M. and Koochak, H. 2011. A study on air pollution induced biochemical alterations in Eucalyptus camaldulensis. Australian Journal of Basic and Applied Sciences, 5 (3): 601-606.
Seyyednejad, S.M., Niknejad, M. and Koochak, H. 2011. A review of some different effects of air pollution on plants. Research Journal of Environmental Sciences, 5 (4): 302-309.
Sharma, P., Toma, P.C. and Chapadgaonkar, S.S. 2019. Phytoremediation of indoor pollution–a mini review. World Journal of Pharmaceutical Research, 8: 2136-2143.
Siswanto, D., Permana, B.H., Treesubsuntorn, C. and Thiravetyan, P. 2020. Sansevieria trifasciata and Chlorophytum comosum botanical biofilter for cigarette smoke phytoremediation in a pilot-scale experiment—evaluation of multi-pollutant removal efficiency and CO2 emission. Air Quality, Atmosphere & Health, 13 (1): 109-117.
Soroori, S. Danaee, E. Hemmati, Kh. and Ladan Moghadam, A.R. 2021. Effect of foliar application of proline on morphological and physiological traits of Calendula officinalis L. under drought stress. Journal of Ornamental Plants, 11 (1): 13-30.
Sriprapat, W., Suksabye, P., Areephak, S., Klantup, P., Waraha, A., Sawattan, A. and Thiravetyan, P. 2014. Uptake of toluene and ethylbenzene by plants: Removal of volatile indoor air contaminants. Ecotoxicology and Environmental Safety, (102): 147-151.
Sriprapat, W. and Thiravetyan, P. 2016. Efficacy of ornamental plants for benzene removal from contaminated air and water: Effect of plant associated bacteria. International Biodeterioration & Biodegradation, 113: 262-268.
Stapleton, E. and Ruiz-Rudolph, P. 2018. The potential for indoor ultrafine particle reduction using vegetation under laboratory conditions. Indoor and Built Environment, 27 (1): 70-83.
Tang, W. and Newton, J.R. 2005. Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus scorba L.) zygotic embryos. Plant Physiolgy Biochemstery, 43: 760-769.
Teiri, H., Pourzamani, H.R. and Hajizadeh, Y. 2018. Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment. Journal of Chemosphere, 197: 375-381.
Yan, S., Hua, H., Zhang, Y. and Zhou, Q. 2015. Study on absorptive capacity to formaldehyde and physiological and biochemical changes of Scindapsus aureus based on the regulation of LaCl3. Agricultural Science & Technology, 16 (12): 2596.
Weschler, C.J. 2016. Roles of the human occupant in indoor chemistry. Indoor Air (International Journal of Environmental and Health), 26 (1): 6-24.