تاثیر سدیم نیتروپروساید بر عمر گلجایی گلهای شاخه بریده رز، لیسیانتوس و آفتابگردان
Subject Areas : Journal of Ornamental Plantsنیره نظیری مقدم 1 , هستی هاشم آبادی 2 , بهزاد کاویانی 3 , Mohammad Reza Safari Motlagh 4 , Mojtaba Khorrami Raad 5
1 - گروه باغبانی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
2 - دانشآموز، دبیرستان دخترانه فرزانگان، دبیرستان دخترانه رشت، رشت، ایران
3 - گروه باغبانی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
4 - گروه گیاهپزشکی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
5 - دانشکده علوم اکوسیستم و جنگل، دانشگاه ملبورن، کرسویک، استرالیا
Keywords: نیتریک اکسید, اتیلن, پیری, محلول محافظ,
Abstract :
عمر گلجایی طولانی مهمترین فاکتور تعیین کننده ارزش اقتصادی در گلهای شاخه بریده است. در این پژوهش اثر سدیم نیتروپروساید (SNP) بصورت تیمار پالس در 4 سطح 0، 20، 40 و 60 میکرومولار بر عمر گلجایی گلهای شاخه بریده رز (Rosa hybrida L.)، لیسیانتوس (Eustoma grandiflorum) و آفتابگردان (Helianthus annuus L.) بررسی شد. این آزمایش بصورت فاکتوریل در قالب طرح کاملا تصادفی در سه تکرار و 12 تیمار اجرا شد. نتایج نشان داد که بالاترین عمرگلجایی گلهای شاخه بریده رز (33/14 روز) و آفتابگردان (5/14 روز) با کاربرد 40 میکرومولار SNP بدست میآید در حالی که بیشترین عمر گلجایی لیسیانتوس (00/14 روز) متعلق به تیمار 20 میکرومولار SNP بود. تیمار 20 میکرومولار SNP موثرترین تیمار در حفظ ماده خشک در گلهای شاخه بریده رز بود.کاربرد SNP نسبت به شاهد بطور معنیداری موجب کاهش تولید اتیلن در گلهای شاخه بریده رز و لیسیانتوس شد. کمترین اتیلن تولید شده در گلهای شاخه بریده آفتابگردان (03/0 نانولیتر در لیتر در ساعت در هر گرم وزن تر) به تیمار 60 میکرومولار SNP تعلق داشت. SNP اثر معناداری بر جذب آب، جمعیت میکروبی محلول گلجایی و انتهای ساقه و کلروفیل b نداشت؛ اما بطور معنیداری موجب حفظ پروتئین در گلهای شاخه بریده مورد آزمایش شد. بطورکلی میتوان گفت که SNP از طریق مهار تولید اتیلن و حفظ پروتئینها موجب بهبود ماندگاری پس از برداشت در گلهای شاخه بریده رز، لیسیانتوس و آفتابگردان میشود.
Abri, F., Ghasemnezhad, M., Sajedi, R., Bakhshi, D. and Shiri, M. 2014. The effect of ascorbic acid in delaying biochemical changes during senescence and extension flowers vase life in rose. Journal of Horticulture Science (Agricultural Sciences and Technology), 28 (1): 25-33.
Antoniou, Ch., Filippou, P., Mylona, Ph., Fasoula, D., Loannides, L., Polidoros, A. and Fotopoulos, V. 2013. Developmental stage and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of Medicago truncatula plants. Plant Signaling and Behavior, 8: 1-10.
Ashouri Vajari, M. and Nalousi, A.M. 2013. Effect of nitric oxide on postharvest quality and vase life of cut carnation flower. Journal of Ornamental Plants, 3 (3): 183-190
Badiyan, D. and Wills, R. 2004. Use of a nitric oxide donor compound to extend the vase life of cut flowers. HortScience, 39 (6): 1371-1372.
Beligni, M.V., Fath, A., Bethke, P.C., Lamattina, L. and Jones, R.L. 2002. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiology, 129: 1642-1650.
Bowyer, M.C., Wills, R.B.H., Badiyan, D. and Ku, V. 2003. Extending the postharvest life of carnations with nitric oxide comparison of fumigation and in vivo delivery. Postharvest Biology and Technology, 30: 281–286.
Cho, M.S., Celikel, F.G., Dodge, L. and Reid, M.S. 2001. Sucrose enhances the postharvest quality of cut flowers of Eustoma grandiflorum (Raf.) Shinn. VII International Symposium on Postharvest Physiology of Ornamental Plants, Acta Horticulturae, 543. doi: 10.17660/ActaHortic.2001.543.37
Del Rio, L.A., Corpas, F.J. and Barroso, J.B. 2004. Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry, 65: 783-792.
Dolatabadian, A., Modares Sanavy, A.M. and Asilan, K. 2009. Effect of ascorbic acid foliar application on yield, yield component and several morphological traits of grain corn under water deficit stress conditions. Notulae Scientia Biologicae, 2 (3): 45-50.
Dwivedi, K.S., Arora, A., Singh, P.V. and Sariam, R. 2016. Effect of sodium nitroprusside on differential activity of SAGS in relation to vase life of gladiolus cut flowers. Scientia Horticulturae, 210: 158-165.
Farazmandi, M., Mirzakhani, A., Sajedi, N., Nasri, M. and Gomariyan, M. 2020. Physiological characteristics and vase life responses of rose cut flowers (Rosa hybrid L. cv. ‘Royal Baccara’) to benzyl adenine and 1-metylcylcopropene. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48 (4): 2279-2291.
Gupta, J. and Dubey, R.K. 2018. Factors affecting postharvest life of flower crops. International Journal of Current Microbiology and Applied Sciences, 7 (1): 548-557.
Jiang, C.Z. 2012. Postharvest biology and technology of cut flowers and potted plants. Horticultural Reviews, 40: 1-54.
Karamian, R., Nasr Esfahani, M. and Shabanian, S. 2019. Study of the effects of salicylic acid, sodium nitroprusside and ethanol on vase life and flower quality of cut flowers of two gerbera varieties. Journal of Plant Research (Iranian Journal of Biology), 32 (3): 635-646. (in Persian)
Kilic, T., Kazaz, S., Gozde Ergur, S.E. and Merve, U. 2020. Extension of the vase life of cut sunflower by different vase solutions. Ornamental Horticulture, 26 (1): 45-50.
Kim, J.H. and Lee, C.H. 2005. In vivo deleterious effects specific to reactive oxygen species on photosystem II after photo oxidative treatment of rice leaves. Plant Sciences, 168: 1115-1125.
Lamattina, L., García-Mata, C., Graziano, M. and Pagnussat, G. 2003. Nitric oxide: The versatility of an extensive signal molecule. Annual Review of Plant Biology, 54 (1): 109-36.
Leshem, Y. and Wills, R. 1998. Harnessing senescence delaying gases nitric oxide and nitrous oxide: A novel approach to postharvest control of fresh horticultural produce. Biologia Plantarum, 41(1): 1-10.
Liao, W.B., Zhang, M.L. and Yu, J.H. 2013. Role of nitric oxide in delaying senescence of cut rose flowers and its interaction with ethylene. Scientia Horticulturae, 155: 30–38.
Liu, J., He, S., Zhang, Z., Cao, J., Lv, P., He, S., Cheng, G. and Joyce, D.C. 2009. Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. Postharvest Biology and Technology, 54: 59–62.
Mansouri, H. 2012. Salicylic acid and sodium nitroprusside improve postharvest life of chrysanthemums. Scientia Horticulturae, 145: 29-33.
Mazumdar, B.C. and Majumdar, K. 2003. Methods on physicochemical analysis of fruits. www. Sundeepbooks.com. 187p.
Mirzaie Esgandian, N. and Jabbarzadeh, Z. 2019. Effects of sodium nitroprusside on improving the vase life of Rosa hybrida cvs. Utopia and Dolce Vita. Journal of Plant Process and Function, 9 (38): 77-91. (in Persian)
Mostofi, Y., Rasouli, P., Naderi, R., Bagheri Marandi, G.H. and Shafiei, M.R. 2010. Effect of nitric oxide and thidiazuron on vase life and some qualitative characteristics of cut carnation flowers (Dianthus caryophyllus cv. Nelson). Iranian Journal of Horticultural Science, 41(4):301- 308.
Naing, A.H., Lee, K., Arun, M., Lim, K.B. and Kim. C.K. 2017. Characterization of the role of sodium nitroprusside (SNP) involved in long vase life of different carnation cultivars. BMC Plant Biology, 17: 2-12.
Neill, S.J., Desikan, R., Clarke, A. and Hancock, J.T. 2002. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiology, 128 (1): 13-6.
Salachna, P. and Byczynska, A. 2017. Effect of nitric oxide and production location on vase life of cut Eucomis 'Sparkling Burgundy' flowers. World Scientific News, 83: 229-234.
Sankhla, N., Mac Kay, W.A. and Davis, T.D. 2005. Effect of nitric oxide generating compounds on flower senescence in cut racemes of pink flowered Lupinus havardii Wats. In: Proceedings of Plant Growth Regulation. Society of America-Annual Meeting, 32: 126-132.
Seyf, M., Khalighi, A., Mostofi, Y. and Naderi, R. 2012. Effect of sodium nitroprusside on vase life and postharvest quality of a cut rose cultivar (Rosa hybrida ‘Utopia’). Journal of Agricultural Science, 4: 174-181.
Shabanian, S., Nasr Esfahani, M., Karamian, R. and Phan Tran, L. 2018. Physiological and biochemical modifications by postharvest treatment with sodium nitroprusside extend vase life of cut flowers of two gerbera cultivars. Postharvest Biology and Technology, 137: 1-8.
Shi, J., Gao, L., Zuo, J., Wang, Q., Wang, Q. and Fan, L. 2016. Exogenous sodium nitroprusside treatment of broccoli florets extends shelf life, enhances antioxidant enzyme activity, and inhibits chlorophyll-degradation. Postharvest Biology and Technology, 116: 98-104.
Skutnik, E., Lukaszewska, A. and Rabiza-Swider, J. 2021. Effects of postharvest treatments with nanosilver on senescence of cut lisianthus (Eustoma grandiflorum Raf.) Shinn.) flowers. Agronomy, 11: 1-15.
Sudaria, M.A., Uthairatanakij, A. and Nguyen, H.T. 2017. Postharvest quality effects of different vase life solutions on cut rose (Rosa hybrida L.). International Journal of Agriculture, Forestry and Life Science, 1(1): 12-20.
Talebi, S.F., Mortazavi, S. and Naderi, R. 2013. An evaluation of antioxidant enzyme activity and protein content of rose (cv. Sensiro). Iranian Journal of Horticultural Science, 44 (3): 359-366. (in Persian)
Tongfei, L., Yuying, W., Boqiang, L., Guozheng, Q. and Shiping, T. 2011. Defence responses of tomato fruit to exogenous nitric oxide during postharvest storage. Postharvest Biology and Technology, 62: 127- 132.
Zeng, C.L., Liu, L. and Xu, G.Q. 2011. The physiological responses of carnation cut flowers to exogenous nitric oxide. Scintia Horticulturae, 127 (3): 424- 430.
Zhang, A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X. and Tan, M. 2007. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist, 175: 36.50.