توانایی ذخیره انرژی بام سبز گسترده با پوشش گیاهی متفاوت در مقایسه با بام بدون پوشش در یک دوره یکساله در ایران
Subject Areas : Journal of Ornamental Plantsنوید وحدتی 1 , علی تهرانی فر 2 , فاطمه کاظمی 3
1 - دانشجوی دکتری، گروه علوم باغبانی و فضای سبز، دانشگاه فردوسی مشهد، ایران
2 - استاد، گروه علوم باغبانی و فضای سبز، دانشگاه فردوسی مشهد، ایران
3 - استادیار، گروه علوم باغبانی و فضای سبز، دانشگاه فردوسی مشهد، ایران
Keywords: فصل, تغییرات فصلی, تغییرات دما, بام سبز, تنوع گیاهی,
Abstract :
دمای هوا در شهرها به دلیل رخداد پدیده جزیره گرمایی و تغییر اقلیمی اجتناب ناپذیر، بهطور پیوسته رو به افزایش است. این افزایش دما منجر به ایجاد مشکلاتی چند از جمله کمبود انرژی در شهرها، برهم زدن شرایط آرامش، ایجاد آسیب برای شهروندان و تشدید آلودگیها شده است. راههای گوناگونی برای کاهش این نگرانیها و مخاطرات وجود داشته و از این میان بامهای سبز بسیار کارا و موثر نشان دادهاند. این تحقیق به بررسی عملکرد ذخیره انرژی (تغییرات دمایی) در یک بام سبز با پوششهای گیاهی متنوع در ایران و شهر مشهد پرداخته است. 9 گونه گیاهی از سه دسته مهمی که معمولا در بام سبز به کار میروند (گراس، گیاهان پوششی و سدومها) (Agropyron cristatum, Festuca aurundinaceae, Festuca ovina, Potentila sp., Frankinia thymifolia, Sedum acre, Sedum spurium, Carpoboratus edulis و Vinca minor) گزینش و تغییرات دمایی در 4 فصل متوالی (پاییز، زمستان، بهار و تابستان) در قالب یک آزمایش کاملا تصادفی با 3 تکرار ثبت گردید. یک واحد آزمایشی بدون پوشش گیاهی (بام بدون پوشش) نیز به عنوان تیمار شاهد در نظر گرفته شد. دماسنجهای کوچک دستی برای اندازهگیری دما در هر جعبه قرار داده شد. نتایج حاکی از اختلاف معنیدار بین بام سبز و بام بدون پوشش با در نظر گرفتن تغییرات دماست (P < 0.01). مطابق پیش بینی، گیاهان با اندازه بزرگتر و وزن زیست توده بالاتر درجه حرارت را با ثبات بیشتری نگهداشت و به ترتیب دماهای بالاتر و پایینتر کمتری در فصول گرم و سرد سال در آنها مشاهده گردید. آسایش دمایی و کاهش مصرف انرژی میتواند با استفاده از بام سبز در سطح گسترده برای نیازهای رو به فزونی شهرها و جمعیت شهروندی، تامین گردد.
Akbari, H., Davis, S., Dorsano, S., Huang, J. and Winert, S. 1992. Cooling our communitie – a guidebook on tree planting and light colored surfacing. US Environmental Protection Agency, Office of Policy Analysis, Climate Change Division, January.
Akbari, H. and Konopacki, S. 2004. Energy effects of heat-island reduction strategies in Toronto, Canada. Energy and Buildings, 29: 191–210.
Akbari, H., Levinson, R. and Rainer, L. 2005. Monitoring the energy-use effects of cool roofs on California commercial buildings. Energy and Buildings, 37: 1007–1101.
Alexandri, E. and Jones, P. 2008. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Environment, 43: 480–493.
Bahgat, G. 2010. Israel’s energy security: The Caspian Sea and the Middle East. Israel Affairs, 16: 406–15.
Cartalis, C., Synodinou, A., Proedrou, M., Tsangrasoulis, A. and Santamouris, M. 2001. Modifications in energy demand in urban areas as a result of climate changes: An assessment for the Southeast Mediterranean region. Energy Conversion and Management, 42 (14): 1647–1656.
Castleton, H.F., Stovin, V., Beck, S.B.M. and Davison, J.B. 2010. Green roofs; building energy savings and the potential for retrofit. Energy and Buildings, 42: 1582–91.
Dunnett, N. and Kingsbury, N. 2008. Planting green roofs and living walls, 2nd edition. Timber Press, Portland Oregon.
Dvorak, B. and Volder, A. 2010. Green roof vegetation for North American ecoregions: A literature review. Landscape and Urban Planning, 96: 197–213.
English Nature. 2003. Green roofs: Their existing status and potential for conserving biodiversity in urban areas. English Nature Report No. 498. English Nature, Peterborough.
Eumorfopoulou, E. and Aravantinos, D. 1998. The contribution of a planted roof to the thermal protection of buildings in Greece. Energy Buildings, 27: 29–36.
Getter, K.L., Bradley Rowe, D. and Cregg, B.M. 2009. Solar radiation intensity influences extensive green roof plant communities. Urban Forestry & Urban Greening; 8: 269–81.
Gill, S.E., Handley, J.F., Ennos, A.R. and Pauleit, S. 2007. Adapting cities for climate change: The role of green infrastructure. Built Environment, 33: 115–133.
Hassid, S., Santamouris, M., Papanikolaou, M., Linardi, A., Klitsikas, N., Georgakis, C. and Assimakopoulos, D.N. 2000. The effect of the Athens heat island on air conditioning load. Energy and Buildings, 32: 131–141.
Jaffal, I., Ouldboukhitine, S.E. and Belarbi, R. 2012. A comprehensive study of the impact of green roofs on building energy performance. Renewable Energy, 43: 157–164.
Kolokotroni, M., Ren, X., Davies, M. and Mavrogianni, A. 2012. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy and Buildings, 47: 302–311.
Kumar, R. and Kaushik, S.C. 2005. Performance evaluation of green roof and shading for thermal protection of buildings. Building and Environment, 40 (11): 1505–1511.
Levermore, G. 2008. A review of the IPCC assessment report four, Part 1: the IPCC process and greenhouse gas emission trends from buildings worldwide. Building Services Engineering Research and Technology, 32: 349–61.
Liu, K. and Minor, J. 2005. Performance evaluation of an extensive green roof. Toronto: National Research Council of Canada.
Permpituck, S. and Namprakai, P. 2012. The energy consumption performance of roof lawn gardens in Thailand. Renewable Energy, 40: 98-103.
Santamouris, M., Papanikolaou, N., Livada, I., Koronakis, I., Georgakis, C., Argiriou, A. and Assimakopoulos, D.N. 2001. On the impact of urban climate to the energy consumption of buildings. Solar Energy, 70 (3): 201–216.
Santamouris, M., Pavlou, C., Doukas, P., Mihalakakou, G., Synnefa, A., Hatzibiros, A. and Patargias, P. 2007. Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece. Energy, 32 (9): 1781–1788.
Sfakianaki Pagalou, E., Pavlou, K., Santamouris, M. and Assimakopoulos, M.N. 2009. Theoretical and experimental analysis of the thermal behaviour of a green roof system installed in two residential buildings in Athens, Greece. International Journal of Energy Research, 33 (12): 1059–1069.
Shashua-Bar, L., Potchter, O., Bitan, A., Boltansky, D. and Yaakov, Y. 2009. Microclimate modelling of street tree species effects within the varied urban morphology in the Mediterranean city of Tel Aviv, Israel. International Journal of Climatology, 30: 44–57.
Solomon, B.D. and Krishna, K. 2011. The coming sustainable energy transition: History, strategies, and outlook. Energy Policy, 39: 7422–31.
Spala, A., Bagiorgas, H.S., Assimakopoulos, M.N., Kalavrouziotis, J., Matthopoulos, D. and Mihalakakou, G. 2008. On the green roof system: Selection, state of the art and energy potential investigation of a system installed in an office building in Athens, Greece. Renew Energy, 33: 173–177.
Takakura, T., Kitade, S. and Goto, E. 2000. Cooling effect of greenery cover over a building. Energy and Buildings, 31: 1–6.
Theodosiou, T. 2003. Summer period analysis of the performance of a planted roof as a passive cooling technique. Energy and Buildings, 35 (9): 909–917.
Theodosiou, T. 2009. Green roofs in buildings: Thermal and environmental behavior. Advances in Building Energy Research, 3 (1): 271–288.
Wan, K.K.W., Li, D.H.W., Liu, D. and Lam, J.C. 2011. Future trends of building heating and cooling loads and energy consumption in different climates. Building and Environment 46: 223–34.
Wolf, D. and Lundholm, J.T. 2008. Water uptake in green roof microcosms: Effects of plant species and water availability. Ecological Engineering, 33: 179–86.
Wong, N.H., Tay, S.F., Wong, R., Ong, C.L. and Sia, A. 2003. Life cycle cost analysis of rooftop gardens in Singapore. Building and Environment, 38: 499–509.
Yan, B. 2011. The research of ecological and economic benefits for green roof. Applied Mechanics and Materials, 71: 71–8.
Zinzi, M. 2010. Cool materials and cool roofs: Potentialities in Mediterranean buildings. Advances in Building Energy Research, 4 (1): 201–266.