Explaining the effect of the physical factors of the atriumOn the thermal performance and ventilation of high buildings in the climate of Rasht city
Subject Areas : Architecture and urbanizationbabak padasht 1 , farzaneh asadi malekjahan 2 , Seyedeh Mamak Salavatian 3
1 - Ph.D Candidate, Department of Architecture, Rasht Branch, Islamic Azad University, Rasht, Iran
2 - Assistant Professor, Department of Architecture, Rasht Branch, Islamic Azad university, Rasht, Iran
3 - Assistant Professor, Department of Architecture, Rasht Branch, Islamic Azad university, Rasht, Iran
Keywords: Energy performance, atrium, Ventilation Performance, High Building, Climate of Rasht city,
Abstract :
Introduction: Atrium is one of the most important architectural elements affecting the energy performance and ventilation of the building. This research investigates the effect of the physical factors of the atrium on the thermal performance, lighting and ventilation of high buildings in the climate of Rasht city. Methodology: The main approach of the research method of this study is quantitative and uses the simulation method. The simulation reference building is a high building with ten floors and a square plan with an open interior design, with a rectangular atrium exactly in the center of the building, defined so that the center of the atrium is located on the center of the building. The indicators of energy performance and ventilation performance including cooling demand, heating demand, total energy consumption, indoor air temperature and the number of air changes throughout the building are considered as dependent variables, and the variables of land dimensions, building form, window-to-wall ratio (WWR) and internal plan are fixed as a control variable. Result and Discussion: The findings show that, in general, the change in the physical factors of the atrium directly affects the thermal performance, lighting and ventilation of high buildings in the climate of Rasht city. Also, the findings show that the variables of length, width, perimeter and area of the atrium in the reference model in the climate of Rasht city have a significant and direct relationship with the heating demand and ventilation volume and an inverse relationship with the lighting demand of the building. The results showed that the cooling demand constitutes the largest amount of energy consumption, i.e. about 74% of the total energy consumption. Also, the heating demand is about 17% of the total energy consumption on average. While lighting energy defines the lowest amount of energy consumption, on average 9% of the total energy consumption. Conclusion:According to the findings, it is concluded that the use of atriums in high buildings in Rasht city is recommended only in situations where there is an urgent need to increase the lighting in the heart of the building;. Also, based on the findings, it can be concluded that in an equal area, the use of a square atrium generally produces better results. Also, rectangular atriums with north-south orientation have a better response in terms of energy performance than other orientations in Rasht city.
خطیبی، اشکان؛ شهبازی، مجید و ترابی، زهره. (1401-الف). ارزیابی شدت روشنایی در فضاهای اداری و ارائه راهکار مداخله گرانه برای کاهش خیرگی در آنها (موردپژوهی: یک ساختمان اداری در تهران). معماری و شهرسازی پایدار. 10(2). 153-164.
خطیبی، اشکان؛ شهبازی، مجید و ترابی، زهره. (1401-ب). بررسی رفتار حرارتی نماها باهدف تعیین گزینه مطلوب از نظر مصرف انرژی (مورد مطالعه: ساختمان اداری در اقلیم تهران). نشریه انرژی¬های تجدیدپذیر و نو، 9(2). 121-129.
خطیبی، اشکان؛ شهبازی، مجید و ترابی، زهره. (1401-ج). بررسی گرایش سرمایهگذاران به هوشمندسازی ساختمان بر اساس مدل (TAM) (مطالعة موردی: مناطق ساحلی استان مازندران). مطالعات جغرافیایی نواحی ساحلی، 3(10). 19-36.
پیریایی، مهرانگیز؛ مفیدی شمیرانی، سید مجید؛ و صابرنژاد، ژاله. (1401). تحلیل پارامترهای طراحی آتریوم (با تاکید بر تشابهات عملکردی با حیاط مرکزی فلات مرکزی ایران)، مطالعه موردی خانه¬های سنتی یزد. مطالعات هنر اسلامی، 19(45). 80-95.
صادق ابرکوهی؛ مریم, طلایی، آویده؛ و کابلی، محمد های. (1401). طراحی مسکن اجتماعی با رویکرد بهینه سازی مصرف انرژی در شهر تهران. مطالعات برنامه¬ریزی سکونتگاه¬های انسانی، 17(4)، 1153-1173.
مرادخانی، ایوب؛ نیک قدم، نیلوفر؛ و طاهباز، منصوره. (1398). مصرف انرژی و انتشار کربن معادل در چرخه حیات جدارههای خارجی متداول مسکن شهری، رهیافتی در توسعه پایدار انرژی (مطالعه موردی: مناطق شهر سنندج). مطالعات برنامه¬ریزی سکونتگاه¬های انسانی، 14(4)، 1035-1056.
موسوی، سید سعید؛ رضائی, پرویز و رمضانی، بهمن. (1402). ارزیابی آسایش حرارتی در فضاهای مسکونی شهر رشت. مطالعات برنامه¬ریزی سکونتگاه¬های انسانی، 18(4)، 129-113.
Abergel, T., Brown, A., Cazzola, P., Dockweiler, S., Dulac, J., Pales, A. F., ... & West, K. (2017). Energy technology perspectives 2017: Catalysing energy technology transformations.
Ahmad, M. H., & Rasdi, M. T. H. M. (2000). Design principles of atrium buildings for the tropics. Penerbit UTM.
Asfour, O. S. (2018). Solar and shading potential of different configurations of building integrated photovoltaics used as shading devices considering hot climatic conditions. Sustainability, 10(12), 4373.
Asfour, O. S. (2020). A comparison between the daylighting and energy performance of courtyard and atrium buildings considering the hot climate of Saudi Arabia. Journal of Building Engineering, 30, 101299.
ASHRAE, A. (2014). Standard 140-2014: Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. ASHRAE, Atlanta.
Bednar, M. J. (1986). The new atrium. New York: McGraw-Hill.
Bryn, I. (1993). Atrium buildings environmental design and energy use.
Coakley, D., Raftery, P., & Keane, M.M. (2014). A review of methods to match building energy simulation models to measured data. Renewable & Sustainable Energy Reviews, 37, 123-141.
Dai, B., Tong, Y., Hu, Q., & Chen, Z. (2022). Characteristics of thermal stratification and its effects on HVAC energy consumption for an atrium building in south China. Energy, 249, 123425.
DesignBuilder Software (2019) Ltd, DesignBuilder V5.5. https://designbuilder.co.uk/hel pv5.5/. Accessed 07 Dec 2019.
Dong, L., He, Y., Qi, Q., & Wang, W. (2022). Optimization of daylight in atrium in underground commercial spaces: A case study in Chongqing, China. Energy and Buildings, 256, 111739.
Encinas, F. (2004). The Technology Transfer of Double Skin Facades from Europe to Chile, an evaluation by means of CFD simulations. Nottingham, UK: University of Nottingham.
Ferrucci, M., Romagnoni, P., Peron, F., & Strada, M. (2022). Computational Fluid Dynamic Study with Comfort Analysis in Large Atrium of the Angelo Hospital in Venice. Energies, 15(9), 3454.
Gassar, A. A. A., & Cha, S. H. (2020). Energy prediction techniques for large-scale buildings towards a sustainable built environment: A review. Energy and Buildings, 224, 110238.
Göçer, Ö., Tavil, A., & Özkan, E. (2006, May). Thermal performance simulation of an atrium building. In Proceedings of eSim building performance simulation conference. Faculty of architecture, landscape, and design. University of Toronto, Canada (pp. 33-40).
Guan, Z., Xu, X., Xue, Y., & Wang, C. (2022). Multi-Objective Optimization Design of Geometric Parameters of Atrium in nZEB Based on Energy Consumption, Carbon Emission and Cost. Sustainability, 15(1), 147.
Holford, J. M., & Hunt, G. R. (2003). Fundamental atrium design for natural ventilation. Building and environment, 38(3), 409-426.
Hung, W. Y., & Chow, W. K. (2001). A review on architectural aspects of atrium buildings. Architectural Science Review, 44(3), 285-295.
Hussain, S., Oosthuizen, P. H., & Kalendar, A. (2012). Evaluation of various turbulence models for the prediction of the airflow and temperature distributions in atria. Energy and Buildings, 48, 18-28.
Laouadi, A., Atif, M. R., & Galasiu, A. (2002). Towards developing skylight design tools for thermal and energy performance of atriums in cold climates. Building and environment, 37(12), 1289-1316.
Li, H., Geng, G., & Xue, Y. (2020, June). Atrium energy efficiency design based on dimensionless index parameters for office building in severe cold region of China. In Building Simulation (Vol. 13, pp. 515-525). Tsinghua University Press.
Magnier, L., & Haghighat, F. (2010). Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network. Building and Environment, 45(3), 739-746.
Olsen, E. L., & Chen, Q. Y. (2003). Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate. Energy and buildings, 35(6), 560-571.
Pfafferott, J., Herkel, S., & Wambsganß, M. (2004). Design, monitoring and evaluation of a low energy office building with passive cooling by night ventilation. Energy and buildings, 36(5), 455-465.
Quek, C. K. (1989). Design of atrium. building in the warm humid tropics. Unpublished M. Phil. Dissertation. Paris, France: Darwin College Cambridge.
Ratajczak, K., Bandurski, K., & Płóciennik, A. (2022). Incorporating an atrium as a HAVC element for energy consumption reduction and thermal comfort improvement in a Polish climate. Energy and Buildings, 277, 112592.
Saxon R.(2017) Atrium building: development and design. London: The Architectural Press Ltd.; 1983.
U.S. Energy Information Administration. Annual energy outlook 2017. 1. 2017.
Zhengyu, F., & Yihua, Z. (2020, July). Numerical Investigation of key design parameters impact on energy consumption of commercial complex distributed atrium in cold area of China. In IOP Conference Series: Earth and Environmental Science (Vol. 531, No. 1, p. 012024). IOP Publishing.