نوع و مقدار انرژی در جیره غذایی جوجههای گوشتی: اثرات بر عملکرد و مورفولوژی دئودنوم
Subject Areas : Camelا. قهرمانی 1 , ع.ا. صادقی 2 , س. حصارکی 3 , م. چمنی 4 , پ. شورنگ 5
1 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Deptartment of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
5 - Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Karaj, Iran
Keywords: عملکرد, انرژی, روغن سویا, جوجه های گوشتی, مورفولوژی دئودنوم,
Abstract :
هدف از انجام مطالعه حاضر ارزیابی اثرات منابع و سطوح مختلف انرژی بر عملکرد، شاخصهای مورفولوژیکی روده کوچک جوجههای گوشتی بود. تعداد 600 قطعه جوجه گوشتی یکروزه به صورت تصادفی در 5 تیمار و 4 تکرار قرار داده شدند. جوجهها با جیره پایه ذرت به عنوان منبع اصلی انرژی و سطح انرژی بر اساس کاتالوگ راهنمای کاب 500 در گروه کنترل (C)، جیره پایه با 3 درصد انرژی کمتر از کنترل (T1)، جیره پایه با 6 درصد انرژی کمتراز کنترل (T2)، جیره پایه با ذرت و روغن سویا و سطح انرژی بر اساس کاتالوگ راهنمای کاب 500 (T3)، جیره پایه با ذرت و روغن سویا و سطح انرژی 3 درصد بالاتر (T4) برای مدت 42 روز تغذیه شدند. نتایج نشان داد، جوجههای گروه T3 وزن بدن، افزایش وزن و ارتفاع پرز دئودنوم بالاتری در مقایسه با گروه کنترل (C) داشته و ضریب تبدیل غذایی در 42 روزگی بهبود یافت (05/0>P). جوجهها در گروه T2 پایینترین وزن بدن، افزایش وزن، ضریب تبدیل غذایی اما بیشترین مصرف خوراک را نشان دادند (05/0>P). تغذیه با جیره تیمار T4 افزایش وزن روزانه و ارتفاع پرز دئودنوم را بهبود بخشید در حالی که به طور همزمان ضریب تبدیل غذایی را افزایش داد. در مقایسه با گروه کنترل، سطوح انرژی بالاتر از نیازهای غذایی کاب به طور معنیداری ارتفاع پرز در دئودنوم را افزایش داد و عمق کریپت را کاهش داد (05/0>P). به منظور دستیابی به وزن بالاتر، انرژی بیشتری از مقدار توصیه شده برای کاب 500 نیاز است اما برای داشتن بازده غذایی بهتر سطح انرژی بر اساس کاتالوگ کاب 500 کافی است.
Cobb 500. (2012). Cobb Broiler Performance and Nutrient Supplement Guide. Cobb-Vantress Inc., Siloam Springs, Arkansas.
Cobb 500. (2010). Cobb Broiler Management Guide. Cobb-Vantress Inc., Siloam Springs, Arkansas.
Das G.B., HossainM.E. and Akbar M.A. (2014). Effects of different oils on productive performance of broiler. Iranian J. Appl. Anim. Sci. 4(1), 111-116.
Dairo F., Adesehinwa A.S.A.O.K., Oluwasola T.A. and Oluyemi J.A. (2010). High and low dietary energy and protein levels for broiler chickens. African J. Agric. Res. 5(15), 2030-2038.
Fan Y., Croom J., Christensen V., Black B., Bird A., Daniel B., Mcbride M. and Eisen E. (1997). Duodenal glucose uptake and oxygen consumption in turkey poulets selected for rapid growth. Poult. Sci. 76, 1738-1745.
Gartner P. and Hiatt J.L. (2001). Color Textbook of Histology. Saunders, Baltimore, Maryland.
Griffiths L., Leeson S. and Summers J.D. (1977). Influence of energy system and level of various soy oil sources on performance and carcass composition of broiler. Poult. Sci. 56, 1018-1026.
Houshmand M., Azhar K., Zulkifli I., Bejo M.H. and Kamyab A. (2011). Effects of non-antibiotic feed additives on performance, nutrient retention, gut ph, and intestinal morphology of broilers fed different levels of energy. J. Appl. Poult. Res. 20, 121-128.
Kamran Z.,Sarwar M., Nisa M., Nadeem M.A., Mahmood S., BarbarM.E. and Ahmed S. (2008). Effect of low protein diets having constant energy-to-protein ratio on performance and carcass characteristics of broiler chickens from one to thirty-five days of age. Poult. Sci. 87, 468-474.
Leeson S., Caston L. and Summers J.D. (1996). Broiler response to diet energy. Poult. Sci. 75, 529-535.
Leeson S., Scott L. and Summers J.D. (2001). Scotts Nutrition of the Chicken. University book, Guelp, Canada.
Leeson S. and Summers J.D. (2005). Feeding Programs for Laying Hens. Commercial poultry nutrition. University books, Guelph, Ontario.
Min Y.N., Shi J.S., Wei F.X., Wang H.Y., Hou X.F., Niu Z.Y. and Liu F.Z. (2012). Effects of dietary energy and protein on growth performance and carcass quality of broilers during finishing phase. J. Anim. Vet. Adv. 11(19), 3652-3657.
Monfaredi A., Rezaei M. and Sayyahzadeh H. (2011). Effect of supplemental soy oil in low energy diets on some blood parameters and carcass characteristics of broiler chicks. South African J. Anim. Sci. 41, 24-32.
Nahashon S., Adefope N.N., Amenyenu A. and Wright D. (2005). Effects of dietary metabolizable energy and crude protein concentrations on growth performance and carcass characteristics of french guinea broilers. Poult. Sci. 84, 337-334.
Noy Y. and Sklan D. (1998). Yolk utilization in the newly hatched poultry. Br. Poult. Sci. 39, 446-451.
NRC. (1994). Nutrient Requirements of Poultry, 9th Rev. Ed. National Academy Press, Washington, DC., USA.
Samanya M. and Yamauchi K. (2002). Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp. Biochem. Physiol. 133, 95-104.
Scaife J.R., Moyo J., Galbraith H., Michie W. and Carmpbell V. (1994). Effect of different dietary supplemental fats and oils on the tissue fatty acid composition and growth of female broilers. Br. Poult. Sci. 35, 107-118.
Soltan M. (2009). Influence of dietary glutamine supplementation on growth performance, small intestinal morphology, immune response and some blood parameters of broiler chickens. Int. J. Poult. Sci. 8, 60-68.
Spratt R.S., Mcbride B.W., Baylay H.S. and Leeson S. (1990). Energy metabolism of broiler breeder hens. 2. Contribution of tissues to total heat production in fed and fasted hens. Poult. Sci. 69, 1348-1356.
SPSS Inc. (2010). Statistical Package for Social Sciences Study. SPSS for Windows, Version 11. Chicago SPSS Inc.
Tarachai P. and Yamauchi K. (2000). Effects of luminal nutrient absorption, intra-luminal physical stimulation, and intravenous parenteral alimentation on the recovery responses of duodenal villus morphology following feed withdrawal in chickens. Poult. Sci. 79, 1578-1585.
Thompson K.L. and Applegate T.J. (2006). Feed withdraw alters small intestinal morphology and mucus of broilers. Poult. Sci. 85, 1535-1540.
Uni Z., Ganot S. and Sklan D. (1998). Post-hatch development of mucosal function in the broiler small intestine. Poult. Sci. 77, 75-82.
Vieira S.L., Viola E.S., Berres J., Olmos A.R., Conde O.R.A. and Almeida J.G. (2006). Performance of broilers fed increased levels energy in the pre-starter diet and on subsequent feeding programs having with acidulated soybean soap stock supplementation. Brazilian J. Poult. Sci. 8(1), 55-61.
Wang X., Peebles E.D. and Zhai W. (2014). Effects of protein source and nutrient density in the diets of male broilers from 8 to 21 days of age on their subsequent growth, blood constituents, and carcass compositions. Poult. Sci. 93, 1463-1474.
Wang X., Peebles E.D., Morgan T.W., Harkess R.L. and Zhai W. (2015). Protein source and nutrient density in the diets of male broilers from 8 to 21 d of age: effects on small intestine morphology. Poult. Sci. 94, 61-67.
Xu Z.R., Hu C.H., Xia M.S., Zhan X.A. and Wang M.Q. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 82, 1030-1036.
Yaghobfar A., Rezaian M., Ashrafi-helan J., Barin H., Fazaeli S. and Sharifi D. (2006). The effect of hull-less barley dietary on the activity of gut microflora and morphology small intestinal of layer hens. Pakistan J. Biol. Sci. 9(4), 659-666.
Yang J.P., Yao J.H. and Liu Y.R. (2007). Effect of feed restriction on growth performance and carcass characteristics of broilers chickens. Acta Agric. Boreali-Occidentalis Sinica. 16, 51-56.
Zai W., Peebles E.D., Zumwalt C.D., Mejia L. and Corozo A. (2013). Effects of dietary amino acid density regimens on growth performance and meat yield of Cobb × Cobb 700 broilers. J. Appl. Poult. Res. 22, 447-460.
Ziegler T.R., Evans M.E., Fernandez-Estivariz C. and Jones D.P. (2003). Trophic and cytoprotective nutrition for intestinal adaptation, muocosal repair and barrier function. Annu. Rev. Nutr. 23, 229-261.