استفاده از چندشکلیهای ریزماهوارهای موجود در ژن Ovar-DRB1 جهت تعیین مقاومت ژنتیکی نسبت به نماتودهای دستگاه گوارش در گوسفندان دنبهدار قزل
Subject Areas : Camelر. حاجی علیزاده ولیلو 1 , س.ع. رافت 2 , م. فیروزآمندی 3 , م. ابراهیمی 4
1 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 - Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
4 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
Keywords: نماتودهای دستگاه گوارش, گوسفند قزل, چندشکلی ریز ماهوارهای, ژن <i>Ovar-DRB1</i>,
Abstract :
این پژوهش به منظور شناسایی دامهای دارای مقاومت ژنتیکی نسبت به نماتودهای دستگاه گوارش (GIN) با استفاده از چندشکلیهای ریزماهوارهای موجود در ژن Ovar-DRB1 برههای نژاد قزل ایرانی طراحی شد. در پژوهش حاضر 120 بره نر قزل 4 تا 6 ماهه به صورت تصادفی از 6 گله گوسفند متفاوت در استان آذربایجان شرقی انتخاب شدند (تعداد 20 گوسفند در هر گله). این برهها به صورت طبیعی با GINها آلوده شده و نمونههای مدفوعی هر حیوان نیز جهت شمارش تعداد تخمانگل موجود در مدفوع (FEC) به صورت دوبار در هفته و با یک هفته فاصله جمعآوری شد. نمونههای خونی نیز جهت استخراج DNA جمعآوری شدند و PCR به منظور افزودهسازی اگزون شماره 2 و توالیهای ریزماهوارهای موجود در اینترون شماره2 ژن Ovar-DRB1 انجام شد. دادهها با استفاده از رویه مختلط در نرم افزار SAS آنالیز شدند. در پژوهش حاضر 24 ژنوتیپ و 20 آلل برای ژن Ovar-DRB1 شناسایی شدند. نتایج نشان دادند که حضور آللی به طول 510 جفت باز (که آلل F نامیده شد) در هر دو دامهای هموزیگوت و هتروزیگوت دارای رابطه قابلتوجه معنیداری (01/0P<) با کاهش FEC دارد، در حالیکه حضور آللی به طول 506 جفتباز (که آلل E نامیده شد) در دامهای هموزیگوت نیز دارای رابطه معنیداری (01/0P<) با افزایش میزان FECمی باشد. بنابراین این پژوهش رابطه قابلتوجه معنیداری را بین چندشکلیهای ریزماهوارهای موجود در ژن Ovar-DRB1 و مقاومت به GIN در برههای نژاد قزل نشان داد.
Abdul Muneer P.M. (2014). Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet. Res. Int. 1, 1-11.
Abdul Muneer P.M., Gopalakrishnan A., Musammilu K.K., Mohindra V., Lal K.K., Basheer V.S. and Lakra W.S. (2009). Genetic variation and population structure of endemic yellow catfish, Horabagrus brachysoma (Bagridae) among three populations of Western Ghat region using RAPD and microsatellite markers. Mol. Biol. Rep. 36, 1779-1791.
Amarante A.F.T., Susin I., Rocha R.A., Silva M.B., Mendes C.Q. and Pires A.V. (2009). Resistance of santaines and crossbred ewes to naturally acquired gastrointestinal nematode infections. Vet. Parasitol. 165, 273-280.
Ammer H., Schwaiger F.W., Kammer Baver C., Gomolka M., Arriens A., Lazary S. and Epplen J.T. (1992). Exonic polymorphism vs. intronic simple repeat hypervariability in MHC DRB genes. Immunogenetics. 35, 332-340.
Anonymous. (1977). Manual of veterinary parasitological laboratory techniques. Technical Bulletin, Ministry of Agriculture, Fisheries and Food, London.
Atlija M., Arranz J.J., Martinez Valladares M. and Gutierrez Gil B. (2016). Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array. Genet. Sel. Evol. 48, 1-16.
Awadalla P. and Ritland K. (1997). Microsatellite variation and evolution in the Mimulusguttatus species complex with contrasting mating systems. Mol. Biol. Evol. 14, 1023-1034.
Baker R.L. (1998). Genetic resistance to endoparasites in sheep and goats: a review of genetic resistance to gastrointestinal nematode parasites in sheep and goats in the tropics and evidence for resistance in some sheep and goat breeds in sub humid coastal Kenya. Anim. Genet. Res. Inform. Bull. 24, 13-30.
Baneh H., Hafezian S.H., Rashidi A., Gholizadeh M. and Rahimi G.H. (2010). Estimation of genetic parameters of body weight traits in Ghezel sheep. Asian-Australas J. Anim. Sci. 23, 149-153.
Benavides M.V., Sonstegard T.S., Kemp S., Mugambi J.M., Gibson J.P., Baker R.L., Hanotte O., Marshall K. and Van Tassell C. (2015). Identification of novel loci associated with gastrointestinal parasite resistance in a Red Maasai x Dorper backcross population. PLoS. One. 10, 1-20.
Blattman A.N., Hulme D.J., Kinghorn B.P., Woolaston R.R., Gray G.D. and Beh K.J. (1993). A search for associations between major histocompatibility complex restriction fragment length polymorphism bands and resistance to Haemonchus contortus infection in sheep. Anim. Genet. 24, 277-282.
Box G.E.P. and Cox D.R. (1994). An analysis of transformations. J. R. Stat. Soc. Series B. Stat. Methodol. 26, 211-252.
Castillo J.A., Medina R.D., Villalobos J.M., Gayosso-Vazquez A., Ulloa-Arvizu R., Rodriguez R.A., Ramirez H.P. and Morales R.A. (2011). Association between major histocompatibility complex microsatellites, fecal egg count, blood, packed cell volume and blood eosinophilia in Pelibuey sheep infected with Haemonchus contortus. Vet. Parasitol. 177, 339-344.
Charon K.M., Moskwa B., Rutkowski R., Gruszczyñska J. and Swiderek W. (2002). Microsatellite polymorphism in DRB1 gene (MHC class II) and its relation to nematode fecal egg count in Polish Heath Sheep. J. Anim. Feed. Sci. 11, 47-58.
Cooper D.W., Van Oorschot R.A.H., Piper L.R. and Le Jambre L.F. (1989). No association between the ovine leucocyte antigen (OLA) system in the australian merino and susceptibility to Haemonchus contortus infection. Int. J. Parasitol. 19, 695-697.
Davies G., Stear M.J., Benothman M., Abuagob O., Kerr A., Mitchell S. and BishopS.C. (2006). Quantitative trait loci associated with parasitic infection in Scottish Blackface sheep. Heredity. 96, 252-258.
Dominik S. (2005). Quantitative trait loci for internal nematode resistance in sheep. Genet. Sel. Evol. 37, 83-96.
Draper N.R. and Smith H. (1981). Applied Regression Analysis. John Wiley and Sons, New York.
Eady S.J., Woolaston R.R. and Barger I.A. (2003). Comparison of genetic and nongenetic strategies for control of gastrointestinal nematodes of sheep. Livest. Prod. Sci. 81, 11-23.
Ferreira M., Bressane K.C.O., Moresco A.R.C., Moreira-Filho O., Almeida-Toledo L.F. and Garcia C. (2014). Comparative application of direct sequencing, PCR-RFLP and cytogenetic markers in the genetic characterization of Pimelodus (Siluriformes, Pimelodidae) species: possible implications for fish conservation. Genet. Mol. Res. 13, 4529-4544.
Gholamian A., Eslami A., Nabavi L. and Rasekh A.R. (2006). A field survey on resistance of gastrointestinal nematodes to Levamisole in sheep in Khuzestan province of Iran. J. Vet. Res. 61, 7-13.
Hajializadeh Valilou R., Rafat S.A., Notter D.R., Shojda D., Moghaddam G.A. and Nematollahi A. (2015). Fecal egg counts for gastrointestinal nematodes are associated with a polymorphism in the MHC-DRB1 gene in the Iranian Ghezel sheep breed. J. Front. Genet. 6, 1-11.
Hazelby C.A., Probert A.J. and Rowlands D.A.P.T. (1994). Anthelmintic resistance in nematodes causing parasitic gastroenteritis of sheep in the UK. J. Vet. Pharmacol. Ther. 17, 245-252.
Hulme D.J., Nicholas F.W., Windon R.G., Brown S.C. and Beh K.J. (1993). The MHC class II region and resistance to an intestinal parasite in sheep. J. Anim. Breed. Gen. 110, 459-472.
Larruskain A., Minguijón E., Garcia-Etxebarria K., ArosteguiI., Moreno B., Juste R.A. and Jugo B.M. (2012). Amino acid signatures in the Ovar-DRB1 peptide binding pockets are associated with Ovine pulmonary adenocarcinoma susceptibility /resistance. Biochem. Biophys. Res. Commun. 428, 463-468.
Le Jambre L.F. (1976). Egg hatch as an in vitro assay of Thiabendazole resistance in nematodes. Vet. Parasitol. 2, 385-391.
Li Y.C., Korol A.B., Fahima T., Beiles A. and Nevo E. (2002). Microsatellites: genomic distribution, putative functions and mutational mechanisms. Mol. Ecol. 11, 2453-2465.
Matika O., Pong Wong R., Woolliams J.A. and BishopS.C. (2011). Confirmation of two quantitative trait loci regions for nematode resistance in commercial British terminal sire breeds. Animal. 5, 1149-1156.
McRae K.M., McEwan J.C., Dodds K.G. and GemmellN.J. (2014). Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genom. 15, 637-650.
Moxon E.R. and Wills C. (1999). DNA microsatellites: agents of evolution?. Sci. Am. 280, 94-99.
Outteridge P.M., Andersson L., Douch P.G.C., Green R.S., Gwakisa P.S., Hohenhaus M.A. and Mikko S. (1996). The PCR typing of MHC-DRB genes in the sheep using primers for an intronic microsatellite: application to nematode parasite resistance. Immunol. Cell. Biol. 74, 330-336.
Paterson S., Wilson K. and Pemberton J.M. (1998). Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population. Proc. Natl. Acad Sci. USA. 95, 3714-3719.
Pickering N.K., Auvray B., Dodds K.G. and McEwan J.C. (2015). Genomic prediction and genome-wide association study for dagginess and host internal parasite resistance in New Zealand sheep. BMC Genom. 16, 958-969.
Riggio V., Matika O., Pong Wong R., Stear M.J. and BishopS.C. (2013). Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs. Heredity. 110, 420-429.
Riggio V., Pong Wong R., Salle G., Usai M.G., Casu S., Moreno C.R., Matika O. and Bishop S.C. (2014). A joint analysis to identify lociunderlying variation in nematode resistance in three European sheep populations. J. Anim. Breed. Genet. 131, 426-436.
Salle G., Jacquiet P., Gruner L., Cortet J., Sauvé C., Prévot F., Grisez C., Bergeaud J.P., Schibler L., Tircazes A., François D., Pery C., Bouvier F., Thouly J.C., Brunel J.C., Legarra A., Elsen J.M., Bouix J., Rupp R. and Moreno C.R. (2012). A genome scan for QTL affecting resistance to Haemonchus contortusin sheep. J. Anim. Sci. 90, 4690-4705.
Samadi Shams S., Zununi Vahed S., Soltanzad F., Kafil V., Barzegari A., Atashpaz S. and Barar J. (2011). Highly effective DNA extraction method from fresh, frozen, dried and clotted blood samples. Bioimpacts. 1, 183-187.
SAS Institute. (2002). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Schwaiger F.W., Buitcamp J., Weyers E. and Epplen J.T. (1993). Typing of artiodactyl MHC-DRB genes with the help of intronic simple repeated DNA sequences. Mol. Ecol. 2, 55-59.
Schwaiger F.W., Gostomski D., Stear M.J., Duncan J.L., Mckellar Q.A., Epplen J.T. and Buitcamp J. (1995). An ovine major histocompatibility complex DRB1 allele is associated with low faecal egg counts following natural, predominantly Ostertagia circumcincta infection. Int. J. Parasitol. 25, 815-822.
Shen H., Han G., Jia B., Jiang S. and Du Y. (2014). MHC-DRB1/DQB1 gene polymorphism and its association with resistance/susceptibility to cystic Echinococcosis in Chinese Merino sheep. J. Parasitol. Res. 1, 1-7.
Stear M.J., Doligalska M. and Donskow Schmelter K. (2007). Alternatives to anthelmintics for the control of nematodes in livestock. Parasitology. 134, 139-151.
Teneva A., Dimitrov K., Petrović Caro V., Petrović M.P., Dimitrova I., Tyufekchiev N. and Petrov N. (2013). Molecular genetics and SSR markers as a new practice in farm animal genomic analysis for breeding and control of disease disorders. Biotechnol. Anim. Husb. 29, 405-429.
Tizard I.R. (2013). Veterinary Immunology. Sanders WB, Philadelphia.
Zajac A.Z. and Conboy G.A. (2012). Veterinary Clinical Parasitology. Wiley-Blackwell, US.
Zane L., Bargelloni L. and Patarnello T. (2002). Strategies for microsatellite isolation: a review. Mol. Ecol. 11, 1-16.