بررسی چندشکلی ژنهای GDF9 و BMP15 در گوسفند مهربان برای یافتن جهشهای تأثیرگذار روی پروتیئن
Subject Areas : Camelا. احمدی 1 , ف. افراز 2 , ر. طالبی 3 , ع. فرحآور 4 , س.م.ف. وحیدی 5
1 - Department of Animal Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
2 - Department of Genomics and Animal, Agricultural Biotechnology Research Institute (ABRI), North branch, Rasht, Iran
3 - Department of Animal Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
4 - Department of Animal Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
5 - Department of Genomics and Animal, Agricultural Biotechnology Research Institute (ABRI), North branch, Rasht, Iran
Keywords: گوسفند, <, i>, BMP15<, /i>, , <, i>, GDF9<, /i>, , اندرکنش فیزیکی, واریانت, ساختار پروتئین,
Abstract :
بهرهگیری از ژنهای عمده باروری از قبیل GDF9 و BMP15 به بهبود صفات تولیدمثلی در برنامههای اصلاح نژادی گوسفند کمک شایانی خواهد نمود. به منظور ارزیابی جهشهای نقطهای بر روی عملکرد پروتئین، چندشکلی ژنهای GDF9 و BMP15 بر روی 12 گوسفند مهربان به وسیله توالی یابی DNA و مدلسازی ساختار پروتئین بررسی شد. تعداد شش چندشکلی تک نوکلئوتیدی شناخته شده به عنوان جهشهای FecG (G1-G6) در اگزون شماره 1 و 2 ژن GDF9 یافت شد. از میان چندشکلیهای یافت شده، جهش G1 (GDF9 exon1 g.2118 G>A)، G1 (GDF9 exon1 g.2118 G>A) و G6 (GDF9 exon 2 g.3974 G>A) ، جایگزینی اسیدآمینه را در ساختار پروتئین نشان دادهاند. هیچ چندشکلی در اگزون 1 و 2 ژن BMP15 یافت نشد. بر اساس چندشکلیهای شناسایی شده، افراد به سه دسته هاپلوتایپی از قبیل هاپلوتایپ وحشی (بدون جهش)، هاپلوتایپ A (جهشهای همزمان G1، G2، G3 و G4) و هاپلوتایپ B (جهشهای همزمان G5 و G6) تقسیمبندی شدند. ساختار سه بُعدی پروتئین GDF9 در هاپلوتایپ A و B به ترتیب یک چرخش 90 و 45 درجهای را نسبت به هاپلوتایپ نوع وحشی نشان داد. واریانتهای G1/p.Arg87His، G4/p.Glu241Lysو G6/p.Val332Ile بر روی پروتئین بیتأثیر بودند. در حالیکه دو جهشG7/p.Val371Met وG8/p.Ser315Phe به احتمال زیاد تأثیرات مخرب بر روی پروتئین داشتند. بر اساس آنالیز درخت تکامل ژن GDF9، افراد هاپلوتایپ A و B به ترتیب به ارزش خود راه اندازی 63 و 76 از هاپلوتایپ نوع وحشی فاصله داشتند. در نتیجه، پروتین GDF9 در افراد هاپلوتایپ نوع A و B به دلیل اثرات سینرژیسم جهشهای همزمان عملکرد بالاتری را نسبت به افراد هاپلوتایپ نوع وحشی نشان میدهد. این نوع جهشها با تأثیر بر روی مارپیچ و چرخشهای پروتئین GDF9 در نواحی حفاظتی، منجر به اندرکنش فیزیکی پروتئین GDF9 با پروتئینهای فاکتور تبدیل کننده رشد بتا (TGFβ) میشوند.
Abdoli R., Zamani P., Deljou A. and Rezvan H. (2013). Association of BMPR1B and GDF9 genes polymorphisms and secondary protein structure changes with reproduction traits in Mehraban ewes. Genetic. 524, 296-303.
Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S. and Sunyaev S.R. (2010). A method and server for predicting damaging missense mutations. Nat. Methods. 7, 248-249.
Akbarpour M., Houshmand M., Ghorashi A. and Hayatgheybi H. (2008). Screening for FecGH mutation of growth differentiation factor 9 gene in Iranian Ghezel sheep population. Int. J. Fertil. Steril. 2, 139-144.
Barzegari A., Atashpaz S., Ghabili K., Nemati Z., Rustaei M. and Azarbaijani R. (2010). Polymorphisms in GDF9 and BMP15 associated with fertility and ovulation rate in Moghani and Ghezel sheep in Iran. Reprod. Domest. Anim. 45, 666-669.
Bodin L., Di Pasquale E., Fabre S., Bontoux M., Monget P., Persani L. and Mulsant P. (2007). A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology. 148, 393-400.
Bodin L., SanCristobal M., Lecerf F., Mulsant P., Bibe B., Lajous D., Belloc J.P., Eychenne F., Amigues Y. and Elsen J.M. (2002). Segregation of a major gene influencing ovulation in progeny of Lacaune meat sheep. Genet. Sel. Evol. 34, 447-464.
Bradford G.E., Quirke J.F., Sitorus P., Inounu I., Tiesnamurti B., Bell F.L., Fletcher I.C. and Torell D.T. (1986). Reproduction in Javanese sheep: evidence for a gene with large effect on ovulation rate and litter size. J. Anim. Sci. 63, 418-431.
Demars J., Fabre S., Sarry J., Rossetti R., Gilbert H., Persani L., Tosser-Klopp G., Mulsant P., Nowak Z., Drobik W., Martyniuk E. and Bodin L. (2013). Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep. PLoS Genet. 9, 1003482.
Drouilhet L., Lecerf F., Bodin L., Fabre S. and Mulsant P. (2009). Fine mapping of the FecL locus influencing prolificacy in Lacaune sheep. Anim. Genet. 40, 804-812.
Drouilhet L., Mansanet C., Sarry J., Tabet K., Bardou P., Woloszyn F., Lluch J., Harichaux G., Viguié C., Monniaux D., Bodin L., Mulsant P. and Fabre S. (2013). The highly prolific phenotype of Lacaune sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary. PLoS Genet. 9, 1003809.
Eghbalsaied S., Amini H., Shahmoradi S. and Farahi M. (2014). Simultaneous presence of G1 and G4 mutations in growth differentiation factor 9 gene of Iranian sheep. Iranian J. Appl. Anim. Sci. 4, 781-785.
Galloway S.M., McNatty K.P., Cambridge L.M., Laitinen M.P., Juengel J.L., Jokiranta T.S., McLaren R.J., Luiro K., Dodds K.G., Montgomery G.W., Beattie A.E., Davis G.H. and Ritvos O. (2000). Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25, 279-283.
Ghaffari M., Nejati-Javaremi A. and Rahimi G. (2009). Detection of polymorphism in BMPR-IB gene associated with twining in Shal sheep using PCR-RFLP method. Int. J. Agric. Biol. 11, 97-99.
Hanrahan J.P., Gregan S.M., Mulsant P., Mullen M., Davis G.H., Powell R. and Galloway S.M. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70, 900-909.
Javanmard A., Azadzadeh N. and Esmailizadeh A.K. (2011). Mutations in bone morphogenetic protein 15 and growth differentiation factor 9 genes are associated with increased litter size in fat-tailed sheep breeds. Vet. Res. Commun. 35, 157-167.
Jones D.T., Taylor W.R. and Thornton J.M. (1992). The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275-282.
Juengel J.L., Bodensteiner K.J., Heath D.A., Hudson N.L., Moeller C.L., Smith P., Galloway S.M., Davis G.H., Sawyer H.R. and McNatty K.P. (2004). Physiology of GDF9 and BMP15 signalling molecules. Anim. Reprod. Sci. 83, 447-460.
Kasiriyan M.M., Hafezian S.H. and Hassani N. (2011). Genetic polymorphism BMP15 and GDF9 genes in Sangsari sheep of Iran. Int. J. Gen. Mol. Biol. 3, 31-34.
Mi L.Z., Brown C.T., Gao Y., Tian Y., Le V.Q., Walz T. and Springer T.A. (2015). Structure of bone morphogenetic protein 9 procomplex. Proc. Natl. Acad. Sci. 112, 3710-3721.
Monestier O., Servin B., Auclair S., Bourquard T., Poupon A., Pascal G. and Fabre S. (2014). Evolutionary origin of bone morphogenetic protein 15 and growth and differentiation factor 9 and differential selective pressure between mono and polyovulating species. Biol. Reprod. 91, 83-91.
Monteagudo L.V., Ponz R., Tejedor M.T., Lavina A. and Sierra I. (2009). A 17 bp deletion in the bone morphogenetic protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed. Anim. Reprod. Sci. 110, 139-146.
Moore R.K. and Shimasaki S. (2005). Molecular biology and physiological role of the oocyte factor, BMP15. Mol. Cell. Endocrinol. 234, 67-73.
Moradband F., Rahimi G. and Gholizadeh M. (2011). Association of polymorphism in fecundity genes of GDF9, BMP15 and BMPR1B with litter size in Iranian Baluchi sheep. Asian Australas. J. Anim. Sci. 24, 1179-1183.
Mullen M.P., Hanrahan J.P., Howard D.J. and Powell R. (2013). Investigation of prolific sheep from UK and Ireland for evidence on origin of the mutations in BMP15 ( FecXG, FecXB) and GDF9 (FecGH) in Belclare and Cambridge sheep. PLoS One. 8, 53172.
Nicol L., BishopS.C., Pong-Wong R., Bendixen C., Holm L.E., Rhind S.M. and McNeilly S.A. (2009). Homozygosity for a single base-pair mutation in the oocyte specific GDF9 gene results in sterility in Thoka sheep. Reproduction. 138, 921-933.
Notter D.R. (2008). Genetic aspects of reproduction in sheep. Reprod. Domest. Anim. 43, 122-128.
Potki P., Mirhoseini S.Z., Afraz F. and Vahidi S.M.F. (2015). Study of polymorphism in GDF9 gene in Moghani and Farahani sheep breeds using PCR-RFLP technique. Pp. 24-26 in Proc. 1st Int. and 9th Natl. Biotechnol. Congr. Islamic Repub. Isfahan, Iran.
Pramod K.R., Sharma S.K., Kumar R. and Rajan A. (2013). Genetics of ovulation rate in farm animals. Vet. World. 6, 833-838.
Reva B., Antipin Y. and Sander C. (2011). Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic. Acids. Res. 39, 118.
Silva B.D., Castro E.A., Souza C.J., Paiva S.R., Sartori R., Franco M.M., Azevedo H.C., Silva T.A.S.N., Vieira A.M.C., Neves J.P. and Melo E.O. (2011). A new polymorphism in the growth and differentiation factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Anim. Genet. 42, 89-92.
Souza C.J.H., McNeilly A.S., Benavides M.V., Melo E.O. and Moraes J.C.F. (2014). Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Anim. Genet. 45, 732-739.
Vage D.I., Husdal M., Matthew P.K., Klemetsdal G. and Boman I.A. (2013). A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep. BMC Genet. 14, 1-9.
Wilson T., Wu X.Y., Juengel J.L., Ross I.K., Lumsden J.M., Lord E.A., Dodds K.G., Walling G.A., McEwan J.C. and O’Connell A.R. (2001). Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol. Reprod. 64, 1225-1235.
Zamani P., Abdoli R., Deljou A. and Rezvan H. (2015). Polymorphism and bioinformatics analysis of growth differentiation factor 9 gene in Lori sheep. Ann. Anim. Sci. 15, 337-348.