برآورد پارامترهای ژنتیکی و روند ژنتیکی نمره سلولهای بدنی گاوهای هلشتاین ایران با استفاده از رکوردهای روز آزمون
Subject Areas : CamelK. Kheirabadi 1 , S. Alijani 2
1 - Department of Animal Science, Ramin Agricultural and Natural Resources University, Mollasani, Ahvaz, Iran
2 - Department of Animal Science, University of Tabriz, Tabriz, Iran
Keywords: پارامترهای ژنتیکی, رگرسیون تصادفی, روند ژنتیکی, نمره سلولهای بدنی,
Abstract :
هدف از این پژوهش برآورد پارامترهای ژنتیکی و روند ژنتیکی نمره سلولهای بدنی (SCS) سه دوره شیردهی نخست گاوهای هلشتاین ایران با استفاده از مدل رگرسیون تصادفی و روش حداکثر درست نمایی محدود شده بود. اطلاعات مورد استفاده شامل 340318 رکورد روز آزمون مربوط به 41526 حیوان در 288 گله، 89969 رکورد روز آزمون مربوط به 11750 حیوان در 127 گله، و 20010 رکورد روز آزمون مربوط به 2461 حیوان در 60 گله، به ترتیب برای دورههای شیردهی اول، دوم و سوم بین سالهای 2002 تا 2010 بود. اثرات ثابت شامل سال زایش، سن-فصل در هنگام زایش (به صورت رگرسیون ثابت برای هر کلاس از این اثر) و گله-تاریخ رکورد برداری بود. برآورد واریانسهای ژنتیک افزایشی، تنها با تغییرات جزئی، برای همه دورههای شیردهی روند مشابهی را نشان داد. برآوردهای وراثت پذیری برای دوره شیردهی اول (03/0 تا 07/0) کمتر از این مقدار برای دورههای شیردهی دوم (07/0 تا 11/0) و سوم (08/0 تا 17/0) بود. همبستگی-های ژنتیکی بین رکوردهای روز آزمون نمره سلولهای بدنی برای روزهای مجاور بالا و بین دو انتهای دوره شیردهی پائین، و با افزایش دوره شیردهی کاهش یافت. همبستگیهای ژنتیکی بین دورههای شیردهی بالاتر از 70/0، اما برای همبستگیهای محیطی در دامنه 22/0 تا 51/0 بود. همبستگیهای ژنتیکی بین دورههای شیردهی تائید میکند که ژنهای کنترل کننده نمره سلولهای بدنی برای دورههای شیردهی مختلف مشابه بوده و انتخاب حیوان برای نمره سلولهای بدنی دوره شیردهی اول روی نمره سلولهای بدنی دیگر دورههای شیردهی تأثیرگذار خواهد بود. روند ژنتیکی نمره سلولهای بدنی تا سال 1995 مطلوب و بعد از آن نامطلوب بود. سطح نسبتاً بالای نمره سلولهای بدنی و روندهای ژنتیکی مثبت آن (431/0 تا 701/0 سال/میلیلیتر/سلول) نشان میدهند که در ایران بهبود ژنتیکی نمره سلولهای بدنی در سطح قابل قبولی انجام نشده است.
Abdini A., Farhangfar H., Shojaian K., Naeemipour H., Bashtani M. and Mohammad Nazari B. (2012). Estimation of genetic parameters and trend for somatic cell score trait in Iranian Holsteins using a random regression test day model. Iranian J. Anim. Sci. 2, 193-200.
Ali A.K.A. and Shook G.E. (1980). An optimum transformation for somatic cell concentration in milk. J. Dairy Sci. 63, 487-490.
Bakhtiarizadeh M.R., Moradi Shahrebabak M. and Pakdel A. (2009). Genetic relationships between linear type traits, somatic cell score and longevity in Holstein cows of Iran. Iranian Anim. Sci. J. 84, 29-38.
Boichard D. and Rupp R. (1997). Genetic analysis and genetic evaluation for somatic cell score in French dairy cattle. Pp. 54-60 in Proc. Int. workshop genet. improv. func. trait. cattle health. Uppsala, Sweden.
Carlén E., Strandberg E. and Roth A. (2004). Genetic parameters for clinical mastitis, somatic cell score and production in the first three lactations of Swedish Holstein cows. J. Dairy Sci. 87, 3062-3070.
Cheraghi S., Kheirabadi K., Alijani S., Moghaddam G. and Rafat S.A. (2012). Estimate of genetic parameters of somatic cell score of Holstein cows. Anim. Sci. 5, 29-30.
De Groot B., Keown J.F., Van Vleck L.D. and Kachman S.D. (2007). Estimates of genetic parameters for Holstein cows for test-day yield traits with a random regression cubic spline model. Gen. Mol. Res. 6, 434-444.
De Ponte Bouwer P., Mostert B.E. and Visser C. (2013). Genetic parameters for production traits and somatic cell score of the SA dairy Swiss population. South African J. Anim. Sci. 43, 113-122.
De Roos A.P.W., Harbers A.G.F. and De Jong G. (2003). Genetic parameters of test-day somatic cell score estimated with a random regression model. Int. Bull. 31, 97-101.
Emanuelson U., Oltenacu P.A. and Gröhn Y.T. (1993). Nonlinear mixed model analyses of five production disorders of dairy cattle. J. Dairy Sci. 76, 2765-2772.
Ghavi Hossein-ZadehN. (2011). Genetic and phenotypic trends for age at first calving and milk yield and compositions in Holstein dairy cows. Arch. Tierz. 4, 338-347.
Haile Mariam M., Goddard M. and Bowman P. (2001). Estimates of genetic parameters for daily somatic cell count of Australian dairy cattle. J. Dairy Sci. 84, 1255-1264.
Harris B.L. and Winkelman A.M. (2004). Test-day model for national genetic evaluation of somatic cell count in New Zealand.Int. Bull. 32, 101-104.
Heringstad B., Klemetsdal G. and Ruane J. (2000). Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries. Livest. Prod. Sci. 64, 95-106.
Hintz R. and Van VLeck L. (1978). Estimation of genetic trends from cow and sire evaluations. J. Dairy Sci. 61, 607-613.
Intaratham W., Koonawootrittriron S., Sopannarath P., Graser H.U. and Tumwasorn S. (2008). Genetic parameters and annual trends for birth and weaning weights of a Northeastern Thai indigenous cattle line. Asian-Australas J. Anim. Sci. 21, 478-483.
Interbull. (2008). Description of national genetic evaluation systems for dairy cattle traits as applied in different Interbull memberacountries. http://wwwinterbull.slu.se/national_ges_info2/framesidaages.htm. Accessed Jun. 2008.
Jakobsen J.H., Madsen P., Jensen J., Pedersen J., Christensen L.G. and Sorensen D.A. (2002). Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML. J. Dairy Sci. 85, 1607-1616.
Jamrozik J., Bohmanova J. and Schaeffer L. (2010). Relationships between milk yield and somatic cell score in Canadian Holsteins from simultaneous and recursive random regression models. J. Dairy Sci. 93, 1216-1233.
Jamrozik J., Schaeffer L.R. and Grignola F. (1998). Genetic parameters for production traits and somatic cell score of Canadian Holsteins with multiple trait random regression model. Pp. 303-306 in Proc. 6th World Cong., Genet. Appl. Livest. Prod. Armidale Australia.
Jattawa D., Koonawootrittriron S., Elzo M.A. and Suwanasopee T. (2012). Somatic cells count and its genetic association with milk yield in dairy cattle raised under Thai tropical environmental conditions. Asian-Australas J. Anim. Sci. 25, 1216-1222.
Kirkpatrick M., Lofsvold D. and Bulmer M. (1990). Analysis of the inheritance, selection and evolution of growth trajectories. Genetics. 124, 979-993.
Luhar R., Patel R.K. and Singh K.M. (2006). Studies on the possible association of ß-lactoglobulin genotype with mastitis in dairy cows. Indian J. Dairy Sci. 59, 155-158.
Luttinen A. and Juga J. (1997). Genetic relationships between milk yield, somatic cell count, mastitis, milkability and leakage in finnish dairy cattle population. Int. Bull. 15, 78-83.
Miglior F., Sewalem A., Jamrozik J., Bohmanova J., Lefebvre D. and Moore R. (2007). Genetic analysis of milk urea nitrogen and lactose and their relationships with other production traits in Canadian Holstein cattle. J. Dairy Sci. 90, 2468-2479.
Miller R., Paape M. and Fulton L. (1991). Variation in milk somatic cells of heifers at first calving. J. Dairy Sci. 74, 3782-3790.
Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T. and Lee D.H. (2002). BLUPF90 and related programs (BGF90). Pp. 28-32 in Proc. 7th World Congr., Genet. Appl. Livest. Prod., Montpellier, France.
Mrode R.A. and Swanson G.J.T. (2003). Estimation of genetic parameters for somatic cell count in the first three lactations using random regression. Livest. Prod. Sci. 79, 239-247.
Muir B.L., Kistemaker G., Jamrozik J. and Canavesi F. (2007). Genetic parameters for a multiple-trait multiple-lactation random regression test-day model in Italian Holsteins. J. Dairy Sci. 90, 1564-1574.
Norman H.D., Miller R.H., Wright J.R. and Wiggans G.R. (2000). Herd and state means for somatic cell count from dairy herd improvement. J. Dairy Sci. 83, 2782-2788.
Ødegard J., Jensen J., Klemetsdal G., Madsen P. and Heringstad B. (2003). Genetic analysis of somatic cell score in Norwegian cattle using random regression test-day models. J. Dairy Sci. 86, 4103-4114.
Rajala-Schultz P.J., Gröhn Y.T., McCulloch C.E. and Guard C.L. (1999). Effects of clinical mastitis on milk yield in dairy cows. J. Dairy Sci. 82, 1213-1220.
Reents R., Jamrozik J., Schaeffer L.R. and Dekkers J.C.M. (1995). Estimation of genetic parameters for test day records of somatic cell score. J. Dairy Sci. 78, 2847-2857.
Rzewuska K., Jamrozik J., Zarnecki A. and Strabel T. (2011). Genetic parameters of test-day somatic cell scores for the first three lactations of Polish Holstein-Friesian cattle. Czech J. Anim. Sci. 56, 381-389.
Samoré A.B., Groen A.F., Boettcher P.J., Jamrozik J., Canavesi F. and Bagnato A. (2008). Genetic correlation patterns between somatic cell score and protein yield in the Italian Holstein-Friesian population. J. Dairy Sci. 91, 4013-4021.
Schutz M. (1994). Genetic evaluation of somatic cell scores for United States dairy cattle. J. Dairy Sci. 77, 2113-2129.
Thompson J., Pollak E. and Pelissier C. (1983). Interrelationships of parturition problems, production of subsequent lactation, reproduction, and age at first calving. J. Dairy Sci. 66, 1119-1127.
Weller J.I., Saran A. and Zeliger Y. (1992). Genetic and environmental relationships among somatic cell count, bacterial infection, and clinical mastitis. J. Dairy Sci. 75, 2532-2540.
Zavadilová L., Wolf J., Štípková M., Nemcová E. and Jamrozik J. (2011). Genetic parameters for somatic cell score in the first three lactations of Czech Holstein and Fleckvieh breeds using a random regression model. Czech J. Anim. Sci. 56, 251-260.